求助PDF
{"title":"Transient Quenching Properties of Vapor Arc Formed in Silica Sand: Contribution of Vaporized SiO2 Mixture to DC Arc Extinction Performance","authors":"Naoto Kodama, Yasunobu Yokomizu, Waku Takenaka, Koya Nakamura","doi":"10.1002/tee.24156","DOIUrl":null,"url":null,"abstract":"<p>The current-limiting fuse uses silica (SiO<sub>2</sub>)-sand as arc quenching medium to increase a current-limiting performance during the DC arc quenching process. In order to increase the current-limiting performance of the fuse, a detailed understanding of an arc resistance <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>r</mi>\n <mi>arc</mi>\n </msub>\n </mrow>\n <annotation>$$ {r}_{\\mathrm{arc}} $$</annotation>\n </semantics></math> rise process is necessary. This paper first carried out a 1000 A DC Cu arc quenching experiment using the silica-sand to obtain transient change in <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>r</mi>\n <mi>arc</mi>\n </msub>\n </mrow>\n <annotation>$$ {r}_{\\mathrm{arc}} $$</annotation>\n </semantics></math>, morphology of the arc, and arc temperature <span></span><math>\n <semantics>\n <mrow>\n <mi>T</mi>\n </mrow>\n <annotation>$$ T $$</annotation>\n </semantics></math> during the arc quenching process. As a result, a current decaying increased <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>r</mi>\n <mi>arc</mi>\n </msub>\n </mrow>\n <annotation>$$ {r}_{\\mathrm{arc}} $$</annotation>\n </semantics></math>. The arc was maintained in the cavity surrounded by the fulgurite during the current decaying process. The temperature of Cu/SiO<sub>2</sub> arc was 25–8 kK at a current region of 950–400 A during the arc quenching process. Second, we theoretically calculated an electrical resistivity <span></span><math>\n <semantics>\n <mrow>\n <mi>ρ</mi>\n </mrow>\n <annotation>$$ \\rho $$</annotation>\n </semantics></math>, and a thermal diffusivity <span></span><math>\n <semantics>\n <mrow>\n <mi>α</mi>\n </mrow>\n <annotation>$$ \\alpha $$</annotation>\n </semantics></math> as vapor properties for the Cu/SiO<sub>2</sub> vapor mixture. As typical results, the admixing of the SiO<sub>2</sub> vapor into the Cu arc less increased <span></span><math>\n <semantics>\n <mrow>\n <mi>ρ</mi>\n </mrow>\n <annotation>$$ \\rho $$</annotation>\n </semantics></math> of the Cu/SiO<sub>2</sub> vapor mixture at <span></span><math>\n <semantics>\n <mrow>\n <mi>T</mi>\n </mrow>\n <annotation>$$ T $$</annotation>\n </semantics></math> between 25 and 5 kK. The <span></span><math>\n <semantics>\n <mrow>\n <mi>ρ</mi>\n </mrow>\n <annotation>$$ \\rho $$</annotation>\n </semantics></math> of the Cu/SiO<sub>2</sub> vapor mixture drastically increased due to only decay in <span></span><math>\n <semantics>\n <mrow>\n <mi>T</mi>\n </mrow>\n <annotation>$$ T $$</annotation>\n </semantics></math>. In contrast, the admixing of the SiO<sub>2</sub> vapor into the Cu arc significantly increased <span></span><math>\n <semantics>\n <mrow>\n <mi>α</mi>\n </mrow>\n <annotation>$$ \\alpha $$</annotation>\n </semantics></math> at <span></span><math>\n <semantics>\n <mrow>\n <mi>T</mi>\n </mrow>\n <annotation>$$ T $$</annotation>\n </semantics></math> between 15 and 8 kK. The present results indicate that an increase in <span></span><math>\n <semantics>\n <mrow>\n <mi>α</mi>\n </mrow>\n <annotation>$$ \\alpha $$</annotation>\n </semantics></math> and consequent rise in thermal energy dissipation from the arc is the main role of the silica-sand vapor mixed with Cu arc in the DC fuse during the arc quenching process. The increased thermal energy dissipation due to the SiO<sub>2</sub> vapor admixing further decreases <span></span><math>\n <semantics>\n <mrow>\n <mi>T</mi>\n </mrow>\n <annotation>$$ T $$</annotation>\n </semantics></math> to rapidly rise <span></span><math>\n <semantics>\n <mrow>\n <mi>ρ</mi>\n </mrow>\n <annotation>$$ \\rho $$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>r</mi>\n <mi>arc</mi>\n </msub>\n </mrow>\n <annotation>$$ {r}_{\\mathrm{arc}} $$</annotation>\n </semantics></math> during the arc quenching process. © 2024 Institute of Electrical Engineers of Japan and Wiley Periodicals LLC.</p>","PeriodicalId":13435,"journal":{"name":"IEEJ Transactions on Electrical and Electronic Engineering","volume":"19 12","pages":"1965-1975"},"PeriodicalIF":1.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEJ Transactions on Electrical and Electronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/tee.24156","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
引用
批量引用
Abstract
The current-limiting fuse uses silica (SiO2 )-sand as arc quenching medium to increase a current-limiting performance during the DC arc quenching process. In order to increase the current-limiting performance of the fuse, a detailed understanding of an arc resistance
r
arc
$$ {r}_{\mathrm{arc}} $$
rise process is necessary. This paper first carried out a 1000 A DC Cu arc quenching experiment using the silica-sand to obtain transient change in
r
arc
$$ {r}_{\mathrm{arc}} $$
, morphology of the arc, and arc temperature
T
$$ T $$
during the arc quenching process. As a result, a current decaying increased
r
arc
$$ {r}_{\mathrm{arc}} $$
. The arc was maintained in the cavity surrounded by the fulgurite during the current decaying process. The temperature of Cu/SiO2 arc was 25–8 kK at a current region of 950–400 A during the arc quenching process. Second, we theoretically calculated an electrical resistivity
ρ
$$ \rho $$
, and a thermal diffusivity
α
$$ \alpha $$
as vapor properties for the Cu/SiO2 vapor mixture. As typical results, the admixing of the SiO2 vapor into the Cu arc less increased
ρ
$$ \rho $$
of the Cu/SiO2 vapor mixture at
T
$$ T $$
between 25 and 5 kK. The
ρ
$$ \rho $$
of the Cu/SiO2 vapor mixture drastically increased due to only decay in
T
$$ T $$
. In contrast, the admixing of the SiO2 vapor into the Cu arc significantly increased
α
$$ \alpha $$
at
T
$$ T $$
between 15 and 8 kK. The present results indicate that an increase in
α
$$ \alpha $$
and consequent rise in thermal energy dissipation from the arc is the main role of the silica-sand vapor mixed with Cu arc in the DC fuse during the arc quenching process. The increased thermal energy dissipation due to the SiO2 vapor admixing further decreases
T
$$ T $$
to rapidly rise
ρ
$$ \rho $$
and
r
arc
$$ {r}_{\mathrm{arc}} $$
during the arc quenching process. © 2024 Institute of Electrical Engineers of Japan and Wiley Periodicals LLC.
硅砂中形成的蒸汽弧的瞬态淬火特性:气化二氧化硅混合物对直流电弧熄灭性能的贡献
限流熔断器使用二氧化硅(SiO2)砂作为熄弧介质,以提高直流熄弧过程中的限流性能。为了提高熔断器的限流性能,有必要详细了解电弧电阻的上升过程。本文首先使用硅砂进行了 1000 A 直流铜熄弧实验,以获得熄弧过程中电弧形态和电弧温度的瞬态变化。结果,电流衰减增加了 。在电流衰减过程中,电弧被保持在由红柱石包围的空腔中。熄弧过程中,在 950-400 A 电流区域,Cu/SiO2 电弧的温度为 25-8 kK。其次,我们从理论上计算了 Cu/SiO2 混合蒸汽的电阻率和热扩散率。典型的结果是,在 25 至 5 kK 的温度范围内,Cu/SiO2 蒸汽混合物在铜弧中的掺入量减少。相比之下,在 15 至 8 kK 时,SiO2 蒸汽掺入铜弧会显著增加。本研究结果表明,在电弧熄灭过程中,直流熔断器中混入铜弧的二氧化硅-砂蒸汽的主要作用是增加电弧的热能耗散并随之增加。在熄弧过程中,由于掺入二氧化硅蒸汽而增加的热能耗散会进一步减少并迅速上升。© 2024 日本电气工程师学会和 Wiley Periodicals LLC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。