Impact of allelochemicals from shade trees bark on the performance of cocoa seedlings

IF 1.3 Q3 AGRONOMY
Jacob Danso, Isaac Kankam Boadu, Joseph Sarkodie-Addo, Michael O. Opoku-Agyeman, Francis Padi, Jacob Ulzen, Alfred Arthur
{"title":"Impact of allelochemicals from shade trees bark on the performance of cocoa seedlings","authors":"Jacob Danso,&nbsp;Isaac Kankam Boadu,&nbsp;Joseph Sarkodie-Addo,&nbsp;Michael O. Opoku-Agyeman,&nbsp;Francis Padi,&nbsp;Jacob Ulzen,&nbsp;Alfred Arthur","doi":"10.1002/agg2.20543","DOIUrl":null,"url":null,"abstract":"<p>Shade trees are important in cocoa agroforestry systems; however, they release allelochemicals from various parts that affect understory plants. Unfortunately, information on allelochemicals produced by shade tree bark in cocoa plantation remain scarce. This study investigates the effect of allelochemicals from bark of shade trees on cocoa seedlings growth. The experiment was a 4 × 11 factorial study, and the treatments were four different concentrations from each of the 11 tree species. The treatments were laid out in a completely randomized design with four replicates. Data were collected at 30, 60, 90, 120, and 150 days after treatment applications. The tree species alone and bark extract concentrations alone significantly impacted plant height from 90 to 150 days after application. <i>Albizia ferruginea</i> (Guill. &amp; Perr.) Benth, <i>Celtis mildbraedii</i> Engl., and <i>Triplochiton scleroxylon</i> K. Schum produced the highest cocoa seedling heights. All concentrations also influenced stem diameter of cocoa seedlings. <i>Albizia ferruginea</i> enhanced stem diameter significantly among tree species and the control. Tree species and bark extract concentrations interacted to increase fresh root weights and dry plant biomass. <i>Albizia ferruginea</i> consistently increased dry plant biomass, while <i>C</i>. <i>mildbraedii</i> produced the highest enhancement for fresh roots. All concentrations enhanced plant biomass, with the 75 mg mL<sup>−1</sup> concentration consistently producing the highest plant fresh and dry weights. <i>Albizia ferruginea</i> and <i>C</i>. <i>mildbraedii</i> can be potential tree species in the cocoa agroforestry when 2-month-old cocoa seedlings are to be transplanted on the field. Bark extract of 75 mg mL<sup>−1</sup> concentration can be used as a growth stimulant on cocoa seedlings.</p>","PeriodicalId":7567,"journal":{"name":"Agrosystems, Geosciences & Environment","volume":"7 3","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agg2.20543","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agrosystems, Geosciences & Environment","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/agg2.20543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Shade trees are important in cocoa agroforestry systems; however, they release allelochemicals from various parts that affect understory plants. Unfortunately, information on allelochemicals produced by shade tree bark in cocoa plantation remain scarce. This study investigates the effect of allelochemicals from bark of shade trees on cocoa seedlings growth. The experiment was a 4 × 11 factorial study, and the treatments were four different concentrations from each of the 11 tree species. The treatments were laid out in a completely randomized design with four replicates. Data were collected at 30, 60, 90, 120, and 150 days after treatment applications. The tree species alone and bark extract concentrations alone significantly impacted plant height from 90 to 150 days after application. Albizia ferruginea (Guill. & Perr.) Benth, Celtis mildbraedii Engl., and Triplochiton scleroxylon K. Schum produced the highest cocoa seedling heights. All concentrations also influenced stem diameter of cocoa seedlings. Albizia ferruginea enhanced stem diameter significantly among tree species and the control. Tree species and bark extract concentrations interacted to increase fresh root weights and dry plant biomass. Albizia ferruginea consistently increased dry plant biomass, while C. mildbraedii produced the highest enhancement for fresh roots. All concentrations enhanced plant biomass, with the 75 mg mL−1 concentration consistently producing the highest plant fresh and dry weights. Albizia ferruginea and C. mildbraedii can be potential tree species in the cocoa agroforestry when 2-month-old cocoa seedlings are to be transplanted on the field. Bark extract of 75 mg mL−1 concentration can be used as a growth stimulant on cocoa seedlings.

树皮中的等位化学物质对可可秧苗表现的影响
遮荫树在可可农林系统中非常重要,但它们会从不同部位释放等位化学物质,影响林下植物。遗憾的是,有关可可种植园中遮荫树树皮产生的等位化学物质的信息仍然很少。本研究调查了荫树树皮中的等位化学物质对可可幼苗生长的影响。实验采用 4 × 11 因式研究,处理为 11 种树种中每种树皮的四种不同浓度。处理采用完全随机设计,设四个重复。数据分别在处理后 30、60、90、120 和 150 天收集。施药后 90 天至 150 天,仅树种和树皮提取物浓度就会对植株高度产生显著影响。Albizia ferruginea (Guill. & Perr.) Benth、Celtis mildbraedii Engl.和 Triplochiton scleroxylon K. Schum 的可可秧苗高度最高。所有浓度也都会影响可可秧苗的茎直径。在树种和对照组中,Albizia ferruginea 能显著增加茎干直径。树种和树皮提取物浓度相互作用,增加了鲜根重量和植物干生物量。Albizia ferruginea 可持续增加植物的干生物量,而 C. mildbraedii 对新鲜根系的增强作用最大。所有浓度都能提高植物生物量,其中 75 毫克毫升-1 浓度的植物鲜重和干重最高。当 2 个月大的可可幼苗被移栽到田地里时,铁线莲(Albizia ferruginea)和白千层(C. mildbraedii)可以作为可可农林业中的潜在树种。浓度为 75 毫克毫升/升的树皮提取物可用作可可幼苗的生长刺激剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Agrosystems, Geosciences & Environment
Agrosystems, Geosciences & Environment Agricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
2.60
自引率
0.00%
发文量
80
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信