Non-serial Quantization-aware Deep Optics for Snapshot Hyperspectral Imaging.

Lizhi Wang, Lingen Li, Weitao Song, Lei Zhang, Zhiwei Xiong, Hua Huang
{"title":"Non-serial Quantization-aware Deep Optics for Snapshot Hyperspectral Imaging.","authors":"Lizhi Wang, Lingen Li, Weitao Song, Lei Zhang, Zhiwei Xiong, Hua Huang","doi":"10.1109/TPAMI.2024.3425512","DOIUrl":null,"url":null,"abstract":"<p><p>Deep optics has been endeavoring to capture hyperspectral images of dynamic scenes, where the optical encoder plays an essential role in deciding the imaging performance. Our key insight is that the optical encoder of a deep optics system is expected to keep fabrication-friendliness and decoder-friendliness, to be faithfully realized in the implementation phase and fully interacted with the decoder in the design phase, respectively. In this paper, we propose the non-serial quantization-aware deep optics (NSQDO), which consists of the fabrication-friendly quantization-aware model (QAM) and the decoder-friendly non-serial manner (NSM). The QAM integrates the quantization process into the optimization and adaptively adjusts the physical height of each quantization level, reducing the deviation of the physical encoder from the numerical simulation through the awareness of and adaptation to the quantization operation of the DOE physical structure. The NSM bridges the encoder and the decoder with full interaction through bidirectional hint connections and flexibilize the connections with a gating mechanism, boosting the power of joint optimization in deep optics. The proposed NSQDO improves the fabrication-friendliness and decoder-friendliness of the encoder and develops the deep optics framework to be more practical and powerful. Extensive synthetic simulation and real hardware experiments demonstrate the superior performance of the proposed method.</p>","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPAMI.2024.3425512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Deep optics has been endeavoring to capture hyperspectral images of dynamic scenes, where the optical encoder plays an essential role in deciding the imaging performance. Our key insight is that the optical encoder of a deep optics system is expected to keep fabrication-friendliness and decoder-friendliness, to be faithfully realized in the implementation phase and fully interacted with the decoder in the design phase, respectively. In this paper, we propose the non-serial quantization-aware deep optics (NSQDO), which consists of the fabrication-friendly quantization-aware model (QAM) and the decoder-friendly non-serial manner (NSM). The QAM integrates the quantization process into the optimization and adaptively adjusts the physical height of each quantization level, reducing the deviation of the physical encoder from the numerical simulation through the awareness of and adaptation to the quantization operation of the DOE physical structure. The NSM bridges the encoder and the decoder with full interaction through bidirectional hint connections and flexibilize the connections with a gating mechanism, boosting the power of joint optimization in deep optics. The proposed NSQDO improves the fabrication-friendliness and decoder-friendliness of the encoder and develops the deep optics framework to be more practical and powerful. Extensive synthetic simulation and real hardware experiments demonstrate the superior performance of the proposed method.

用于快照高光谱成像的非序列量化感知深度光学。
深度光学一直致力于捕捉动态场景的高光谱图像,其中光学编码器在决定成像性能方面起着至关重要的作用。我们的主要观点是,深度光学系统的光编码器应保持制造友好性和解码友好性,分别在实现阶段和设计阶段与解码器充分互动。本文提出了非串行量化感知深度光学(NSQDO),它由便于制造的量化感知模型(QAM)和便于解码器的非串行方式(NSM)组成。QAM 将量化过程集成到优化中,并自适应地调整每个量化级的物理高度,通过感知和适应 DOE 物理结构的量化操作,减少物理编码器与数值模拟的偏差。NSM 通过双向提示连接将编码器和解码器连接起来,实现充分互动,并通过门控机制灵活连接,增强了深度光学中的联合优化能力。所提出的 NSQDO 改善了编码器的制造友好性和解码器友好性,使深度光学框架更加实用和强大。广泛的合成仿真和实际硬件实验证明了所提方法的优越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信