{"title":"Investigational and emerging gastric inhibitory polypeptide (GIP) receptor-based therapies for the treatment of obesity.","authors":"Robert H Gaffey, Afua K Takyi, Alpana Shukla","doi":"10.1080/13543784.2024.2377319","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>One billion people live with obesity. The most promising medications for its treatment are incretin-based therapies, based on enteroendocrine peptides released in response to oral nutrients, specifically glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP). The mechanisms by which GLP-1 receptor agonism cause weight reduction are becoming increasingly understood. However, the mechanisms by which GIP receptor-modulating medications cause weight loss remain to be clarified.</p><p><strong>Areas covered: </strong>This review describes GLP-1 and GIP physiology and explores the conflicting data regarding GIP and weight management. It details examples of how to reconcile the contradictory findings that both GIP receptor agonism and antagonism cause weight reduction. Specifically, it discusses the concept of 'biased agonism' wherein exogenous peptides cause different post-receptor signaling patterns than native ligands. It discusses how GIP effects in adipose tissue and the central nervous system may cause weight reduction. It describes GIP receptor-modulating compounds and their most current trials regarding weight reduction.</p><p><strong>Expert opinion: </strong>Effects of GIP receptor-modulating compounds on different tissues have implications for both weight reduction and other cardiometabolic diseases. Further study is needed to understand the implications of GIP agonism on not just weight reduction, but also cardiovascular disease, liver disease, bone health and fat storage.</p>","PeriodicalId":12313,"journal":{"name":"Expert opinion on investigational drugs","volume":" ","pages":"757-773"},"PeriodicalIF":4.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert opinion on investigational drugs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/13543784.2024.2377319","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: One billion people live with obesity. The most promising medications for its treatment are incretin-based therapies, based on enteroendocrine peptides released in response to oral nutrients, specifically glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP). The mechanisms by which GLP-1 receptor agonism cause weight reduction are becoming increasingly understood. However, the mechanisms by which GIP receptor-modulating medications cause weight loss remain to be clarified.
Areas covered: This review describes GLP-1 and GIP physiology and explores the conflicting data regarding GIP and weight management. It details examples of how to reconcile the contradictory findings that both GIP receptor agonism and antagonism cause weight reduction. Specifically, it discusses the concept of 'biased agonism' wherein exogenous peptides cause different post-receptor signaling patterns than native ligands. It discusses how GIP effects in adipose tissue and the central nervous system may cause weight reduction. It describes GIP receptor-modulating compounds and their most current trials regarding weight reduction.
Expert opinion: Effects of GIP receptor-modulating compounds on different tissues have implications for both weight reduction and other cardiometabolic diseases. Further study is needed to understand the implications of GIP agonism on not just weight reduction, but also cardiovascular disease, liver disease, bone health and fat storage.
期刊介绍:
Expert Opinion on Investigational Drugs (ISSN 1354-3784 [print], 1744-7658 [electronic]) is a MEDLINE-indexed, peer-reviewed, international journal publishing review articles and original papers on drugs in preclinical and early stage clinical development, providing expert opinion on the scope for future development.
The Editors welcome:
Reviews covering preclinical through to Phase II data on drugs or drug classes for specific indications, and their potential impact on future treatment strategies
Drug Evaluations reviewing the clinical and pharmacological data on a particular drug
Original Research papers reporting the results of clinical investigations on agents that are in Phase I and II clinical trials
The audience consists of scientists, managers and decision-makers in the pharmaceutical industry, and others closely involved in R&D.