Artificial Intelligence-based Segmentation of Residual Pancreatic Cancer in Resection Specimens Following Neoadjuvant Treatment (ISGPP-2): International Improvement and Validation Study.

IF 4.5 1区 医学 Q1 PATHOLOGY
American Journal of Surgical Pathology Pub Date : 2024-09-01 Epub Date: 2024-07-02 DOI:10.1097/PAS.0000000000002270
Boris V Janssen, Bart Oteman, Mahsoem Ali, Pieter A Valkema, Volkan Adsay, Olca Basturk, Deyali Chatterjee, Angela Chou, Stijn Crobach, Michael Doukas, Paul Drillenburg, Irene Esposito, Anthony J Gill, Seung-Mo Hong, Casper Jansen, Mike Kliffen, Anubhav Mittal, Jas Samra, Marie-Louise F van Velthuysen, Aslihan Yavas, Geert Kazemier, Joanne Verheij, Ewout Steyerberg, Marc G Besselink, Huamin Wang, Caroline Verbeke, Arantza Fariña, Onno J de Boer
{"title":"Artificial Intelligence-based Segmentation of Residual Pancreatic Cancer in Resection Specimens Following Neoadjuvant Treatment (ISGPP-2): International Improvement and Validation Study.","authors":"Boris V Janssen, Bart Oteman, Mahsoem Ali, Pieter A Valkema, Volkan Adsay, Olca Basturk, Deyali Chatterjee, Angela Chou, Stijn Crobach, Michael Doukas, Paul Drillenburg, Irene Esposito, Anthony J Gill, Seung-Mo Hong, Casper Jansen, Mike Kliffen, Anubhav Mittal, Jas Samra, Marie-Louise F van Velthuysen, Aslihan Yavas, Geert Kazemier, Joanne Verheij, Ewout Steyerberg, Marc G Besselink, Huamin Wang, Caroline Verbeke, Arantza Fariña, Onno J de Boer","doi":"10.1097/PAS.0000000000002270","DOIUrl":null,"url":null,"abstract":"<p><p>Neoadjuvant therapy (NAT) has become routine in patients with borderline resectable pancreatic cancer. Pathologists examine pancreatic cancer resection specimens to evaluate the effect of NAT. However, an automated scoring system to objectively quantify residual pancreatic cancer (RPC) is currently lacking. Herein, we developed and validated the first automated segmentation model using artificial intelligence techniques to objectively quantify RPC. Digitized histopathological tissue slides were included from resected pancreatic cancer specimens from 14 centers in 7 countries in Europe, North America, Australia, and Asia. Four different scanner types were used: Philips (56%), Hamamatsu (27%), 3DHistech (10%), and Leica (7%). Regions of interest were annotated and classified as cancer, non-neoplastic pancreatic ducts, and others. A U-Net model was trained to detect RPC. Validation consisted of by-scanner internal-external cross-validation. Overall, 528 unique hematoxylin and eosin (H & E) slides from 528 patients were included. In the individual Philips, Hamamatsu, 3DHistech, and Leica scanner cross-validations, mean F1 scores of 0.81 (95% CI, 0.77-0.84), 0.80 (0.78-0.83), 0.76 (0.65-0.78), and 0.71 (0.65-0.78) were achieved, respectively. In the meta-analysis of the cross-validations, the mean F1 score was 0.78 (0.71-0.84). A final model was trained on the entire data set. This ISGPP model is the first segmentation model using artificial intelligence techniques to objectively quantify RPC following NAT. The internally-externally cross-validated model in this study demonstrated robust performance in detecting RPC in specimens. The ISGPP model, now made publically available, enables automated RPC segmentation and forms the basis for objective NAT response evaluation in pancreatic cancer.</p>","PeriodicalId":7772,"journal":{"name":"American Journal of Surgical Pathology","volume":" ","pages":"1108-1116"},"PeriodicalIF":4.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11321604/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Surgical Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/PAS.0000000000002270","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Neoadjuvant therapy (NAT) has become routine in patients with borderline resectable pancreatic cancer. Pathologists examine pancreatic cancer resection specimens to evaluate the effect of NAT. However, an automated scoring system to objectively quantify residual pancreatic cancer (RPC) is currently lacking. Herein, we developed and validated the first automated segmentation model using artificial intelligence techniques to objectively quantify RPC. Digitized histopathological tissue slides were included from resected pancreatic cancer specimens from 14 centers in 7 countries in Europe, North America, Australia, and Asia. Four different scanner types were used: Philips (56%), Hamamatsu (27%), 3DHistech (10%), and Leica (7%). Regions of interest were annotated and classified as cancer, non-neoplastic pancreatic ducts, and others. A U-Net model was trained to detect RPC. Validation consisted of by-scanner internal-external cross-validation. Overall, 528 unique hematoxylin and eosin (H & E) slides from 528 patients were included. In the individual Philips, Hamamatsu, 3DHistech, and Leica scanner cross-validations, mean F1 scores of 0.81 (95% CI, 0.77-0.84), 0.80 (0.78-0.83), 0.76 (0.65-0.78), and 0.71 (0.65-0.78) were achieved, respectively. In the meta-analysis of the cross-validations, the mean F1 score was 0.78 (0.71-0.84). A final model was trained on the entire data set. This ISGPP model is the first segmentation model using artificial intelligence techniques to objectively quantify RPC following NAT. The internally-externally cross-validated model in this study demonstrated robust performance in detecting RPC in specimens. The ISGPP model, now made publically available, enables automated RPC segmentation and forms the basis for objective NAT response evaluation in pancreatic cancer.

基于人工智能的新辅助治疗后切除标本中残留胰腺癌的分割(ISGPP-2):国际改进与验证研究》。
新辅助治疗(NAT)已成为边缘可切除胰腺癌患者的常规治疗方法。病理学家检查胰腺癌切除标本以评估 NAT 的效果。然而,目前还缺乏一种自动评分系统来客观量化残留胰腺癌(RPC)。在此,我们开发并验证了首个利用人工智能技术客观量化 RPC 的自动分割模型。数字化组织病理切片来自欧洲、北美、澳大利亚和亚洲 7 个国家 14 个中心的切除胰腺癌标本。使用了四种不同类型的扫描仪:飞利浦(56%)、滨松(27%)、3DHistech(10%)和徕卡(7%)。感兴趣的区域被注释并分类为癌症、非肿瘤性胰腺导管和其他。训练了一个 U-Net 模型来检测 RPC。验证包括扫描仪内部-外部交叉验证。总体而言,共纳入了来自 528 名患者的 528 张独特的苏木精和伊红(H & E)切片。在飞利浦、滨松、3DHistech 和 Leica 扫描仪的单独交叉验证中,平均 F1 分数分别为 0.81(95% CI,0.77-0.84)、0.80(0.78-0.83)、0.76(0.65-0.78)和 0.71(0.65-0.78)。在交叉验证的元分析中,平均 F1 得分为 0.78(0.71-0.84)。最终模型在整个数据集上得到了训练。该 ISGPP 模型是首个使用人工智能技术客观量化 NAT 后 RPC 的分割模型。在这项研究中,经过内部和外部交叉验证的模型在检测标本中的 RPC 方面表现出色。现在公开发布的 ISGPP 模型实现了 RPC 的自动分割,为客观评估胰腺癌的 NAT 反应奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.30
自引率
5.40%
发文量
295
审稿时长
1 months
期刊介绍: The American Journal of Surgical Pathology has achieved worldwide recognition for its outstanding coverage of the state of the art in human surgical pathology. In each monthly issue, experts present original articles, review articles, detailed case reports, and special features, enhanced by superb illustrations. Coverage encompasses technical methods, diagnostic aids, and frozen-section diagnosis, in addition to detailed pathologic studies of a wide range of disease entities. Official Journal of The Arthur Purdy Stout Society of Surgical Pathologists and The Gastrointestinal Pathology Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信