Raman Sideband Cooling of Molecules in an Optical Tweezer Array to the 3D Motional Ground State

IF 11.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Yicheng Bao, Scarlett S. Yu, Jiaqi You, Loïc Anderegg, Eunmi Chae, Wolfgang Ketterle, Kang-Kuen Ni, John M. Doyle
{"title":"Raman Sideband Cooling of Molecules in an Optical Tweezer Array to the 3D Motional Ground State","authors":"Yicheng Bao, Scarlett S. Yu, Jiaqi You, Loïc Anderegg, Eunmi Chae, Wolfgang Ketterle, Kang-Kuen Ni, John M. Doyle","doi":"10.1103/physrevx.14.031002","DOIUrl":null,"url":null,"abstract":"Ultracold polar molecules are promising for quantum information processing and searches for physics beyond the standard model. Laser cooling to ultracold temperatures is an established technique for trapped diatomic and triatomic molecules. Further cooling of the molecules to near the motional ground state is crucial for reducing various dephasings in quantum and precision applications. In this work, we demonstrate Raman sideband cooling (RSC) of CaF molecules in optical tweezers to near their motional ground state, with average motional occupation quantum numbers of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mover accent=\"true\"><mi>n</mi><mo stretchy=\"false\">¯</mo></mover><mi>x</mi></msub><mo>=</mo><mn>0.16</mn><mo stretchy=\"false\">(</mo><mn>12</mn><mo stretchy=\"false\">)</mo></math>, <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mover accent=\"true\"><mi>n</mi><mo stretchy=\"false\">¯</mo></mover><mi>y</mi></msub><mo>=</mo><mn>0.17</mn><mo stretchy=\"false\">(</mo><mn>17</mn><mo stretchy=\"false\">)</mo></math> (radial directions), and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mover accent=\"true\"><mi>n</mi><mo stretchy=\"false\">¯</mo></mover><mi>z</mi></msub><mo>=</mo><mn>0.22</mn><mo stretchy=\"false\">(</mo><mn>16</mn><mo stretchy=\"false\">)</mo></math> (axial direction), and a 3-D motional-ground-state probability of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>54</mn><mo>±</mo><mn>18</mn><mo>%</mo></math> of the molecules that survive the RSC. This process paves the way to increase molecular coherence times in optical tweezers for robust quantum computation and simulation applications.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":null,"pages":null},"PeriodicalIF":11.6000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.14.031002","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ultracold polar molecules are promising for quantum information processing and searches for physics beyond the standard model. Laser cooling to ultracold temperatures is an established technique for trapped diatomic and triatomic molecules. Further cooling of the molecules to near the motional ground state is crucial for reducing various dephasings in quantum and precision applications. In this work, we demonstrate Raman sideband cooling (RSC) of CaF molecules in optical tweezers to near their motional ground state, with average motional occupation quantum numbers of n¯x=0.16(12), n¯y=0.17(17) (radial directions), and n¯z=0.22(16) (axial direction), and a 3-D motional-ground-state probability of 54±18% of the molecules that survive the RSC. This process paves the way to increase molecular coherence times in optical tweezers for robust quantum computation and simulation applications.

Abstract Image

拉曼边带冷却光镊阵列中的分子至三维运动基态
超冷极性分子有望用于量子信息处理和标准模型之外的物理学研究。激光冷却到超低温是一种用于捕获二原子和三原子分子的成熟技术。将分子进一步冷却到接近运动基态对于减少量子和精密应用中的各种失重至关重要。在这项工作中,我们展示了在光学镊子中将 CaF 分子冷却到接近运动基态的拉曼边带冷却(RSC)过程,其平均运动占据量子数为 n¯x=0.16(12)、n¯y=0.17(17)(径向方向)和 n¯z=0.22(16)(轴向方向),并且在 RSC 中存活的分子的三维运动基态概率为 54±18%。这一过程为增加光镊中的分子相干时间铺平了道路,从而实现稳健的量子计算和模拟应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review X
Physical Review X PHYSICS, MULTIDISCIPLINARY-
CiteScore
24.60
自引率
1.60%
发文量
197
审稿时长
3 months
期刊介绍: Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信