BioMapAI: Artificial Intelligence Multi-Omics Framework Modeling of Myalgic Encephalomyelitis / Chronic Fatigue Syndrome.

Ruoyun Xiong, Elizabeth Aiken, Ryan Caldwell, Suzanne D Vernon, Lina Kozhaya, Courtney Gunter, Lucinda Bateman, Derya Unutmaz, Julia Oh
{"title":"BioMapAI: Artificial Intelligence Multi-Omics Framework Modeling of Myalgic Encephalomyelitis / Chronic Fatigue Syndrome.","authors":"Ruoyun Xiong, Elizabeth Aiken, Ryan Caldwell, Suzanne D Vernon, Lina Kozhaya, Courtney Gunter, Lucinda Bateman, Derya Unutmaz, Julia Oh","doi":"10.1101/2024.06.24.600378","DOIUrl":null,"url":null,"abstract":"<p><p>Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a chronic illness with a multifactorial etiology and heterogeneous symptomatology, posing major challenges for diagnosis and treatment. Here, we present BioMapAI, a supervised deep neural network trained on a four-year, longitudinal, multi-omics dataset from 249 participants, which integrates gut metagenomics, plasma metabolomics, immune cell profiling, blood laboratory data, and detailed clinical symptoms. By simultaneously modeling these diverse data types to predict clinical severity, BioMapAI identifies disease- and symptom-specific biomarkers and robustly classifies ME/CFS in both held-out and independent external cohorts. Using an explainable AI approach, we construct the first connectivity map spanning the microbiome, immune system, and plasma metabolome in health and ME/CFS, adjusted for age, gender, and additional clinical factors. This map uncovers disrupted associations between microbial metabolism (e.g., short-chain fatty acids, branched-chain amino acids, tryptophan, benzoate), plasma lipids and bile acids, and heightened inflammatory responses in mucosal and inflammatory T cell subsets (MAIT, γδT) secreting IFNγ and GzA. Overall, BioMapAI provides unprecedented systems-level insights into ME/CFS, refining existing hypotheses and hypothesizing new pathways associated to the disease heterogeneous symptoms.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11230215/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.06.24.600378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a chronic illness with a multifactorial etiology and heterogeneous symptomatology, posing major challenges for diagnosis and treatment. Here, we present BioMapAI, a supervised deep neural network trained on a four-year, longitudinal, multi-omics dataset from 249 participants, which integrates gut metagenomics, plasma metabolomics, immune cell profiling, blood laboratory data, and detailed clinical symptoms. By simultaneously modeling these diverse data types to predict clinical severity, BioMapAI identifies disease- and symptom-specific biomarkers and robustly classifies ME/CFS in both held-out and independent external cohorts. Using an explainable AI approach, we construct the first connectivity map spanning the microbiome, immune system, and plasma metabolome in health and ME/CFS, adjusted for age, gender, and additional clinical factors. This map uncovers disrupted associations between microbial metabolism (e.g., short-chain fatty acids, branched-chain amino acids, tryptophan, benzoate), plasma lipids and bile acids, and heightened inflammatory responses in mucosal and inflammatory T cell subsets (MAIT, γδT) secreting IFNγ and GzA. Overall, BioMapAI provides unprecedented systems-level insights into ME/CFS, refining existing hypotheses and hypothesizing new pathways associated to the disease heterogeneous symptoms.

BioMapAI:肌痛性脑脊髓炎/慢性疲劳综合征的人工智能多指标建模。
像 ME/CFS 和长 COVID 这样的慢性疾病具有高度异质性,其病因和进展具有多因素性,从而使诊断和治疗变得复杂。为了解决这个问题,我们利用迄今为止最丰富的 ME/CFS 纵向多'omics 数据集开发了可解释深度学习框架 BioMapAI。该数据集包括肠道元基因组、血浆代谢组、免疫分析、血液化验和临床症状。通过将多'omics 连接到症状矩阵,BioMapAI 确定了疾病和症状特异性生物标记物,重建了症状,并在疾病分类方面达到了最先进的精度。我们还首次绘制了这些'omics'在健康和疾病状态下的连接图,并揭示了微生物组-免疫-代谢组之间的串扰如何从健康状态转变为 ME/CFS。因此,我们为 ME/CFS 提出了几个创新的机理假说:微生物功能紊乱--SCFA(丁酸)、BCAA(氨基酸)、色氨酸、苯甲酸--与血浆脂质和胆汁酸失去联系,激活炎症和粘膜免疫细胞(MAIT、γδT 细胞),分泌 INFγ 和 GzA。这些异常动态与疾病的主要症状有关,包括胃肠道问题、疲劳和睡眠问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信