Unified Multi-Modal Image Synthesis for Missing Modality Imputation.

Yue Zhang, Chengtao Peng, Qiuli Wang, Dan Song, Kaiyan Li, S Kevin Zhou
{"title":"Unified Multi-Modal Image Synthesis for Missing Modality Imputation.","authors":"Yue Zhang, Chengtao Peng, Qiuli Wang, Dan Song, Kaiyan Li, S Kevin Zhou","doi":"10.1109/TMI.2024.3424785","DOIUrl":null,"url":null,"abstract":"<p><p>Multi-modal medical images provide complementary soft-tissue characteristics that aid in the screening and diagnosis of diseases. However, limited scanning time, image corruption and various imaging protocols often result in incomplete multi-modal images, thus limiting the usage of multi-modal data for clinical purposes. To address this issue, in this paper, we propose a novel unified multi-modal image synthesis method for missing modality imputation. Our method overall takes a generative adversarial architecture, which aims to synthesize missing modalities from any combination of available ones with a single model. To this end, we specifically design a Commonality- and Discrepancy-Sensitive Encoder for the generator to exploit both modality-invariant and specific information contained in input modalities. The incorporation of both types of information facilitates the generation of images with consistent anatomy and realistic details of the desired distribution. Besides, we propose a Dynamic Feature Unification Module to integrate information from a varying number of available modalities, which enables the network to be robust to random missing modalities. The module performs both hard integration and soft integration, ensuring the effectiveness of feature combination while avoiding information loss. Verified on two public multi-modal magnetic resonance datasets, the proposed method is effective in handling various synthesis tasks and shows superior performance compared to previous methods.</p>","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TMI.2024.3424785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-modal medical images provide complementary soft-tissue characteristics that aid in the screening and diagnosis of diseases. However, limited scanning time, image corruption and various imaging protocols often result in incomplete multi-modal images, thus limiting the usage of multi-modal data for clinical purposes. To address this issue, in this paper, we propose a novel unified multi-modal image synthesis method for missing modality imputation. Our method overall takes a generative adversarial architecture, which aims to synthesize missing modalities from any combination of available ones with a single model. To this end, we specifically design a Commonality- and Discrepancy-Sensitive Encoder for the generator to exploit both modality-invariant and specific information contained in input modalities. The incorporation of both types of information facilitates the generation of images with consistent anatomy and realistic details of the desired distribution. Besides, we propose a Dynamic Feature Unification Module to integrate information from a varying number of available modalities, which enables the network to be robust to random missing modalities. The module performs both hard integration and soft integration, ensuring the effectiveness of feature combination while avoiding information loss. Verified on two public multi-modal magnetic resonance datasets, the proposed method is effective in handling various synthesis tasks and shows superior performance compared to previous methods.

用于缺失模态估算的统一多模态图像合成。
多模态医学图像可提供互补的软组织特征,有助于疾病的筛查和诊断。然而,有限的扫描时间、图像损坏和各种成像协议往往导致多模态图像不完整,从而限制了多模态数据在临床上的应用。针对这一问题,我们在本文中提出了一种用于缺失模态估算的新型统一多模态图像合成方法。我们的方法总体上采用了生成对抗架构,旨在用单一模型从任意可用模态组合中合成缺失模态。为此,我们专门为生成器设计了共性和差异敏感编码器,以利用输入模态中包含的模态不变信息和特定信息。这两类信息的结合有助于生成具有一致解剖结构和所需分布的真实细节的图像。此外,我们还提出了一个动态特征统一模块,用于整合来自不同数量可用模态的信息,从而使网络对随机缺失模态具有鲁棒性。该模块同时执行硬整合和软整合,确保特征组合的有效性,同时避免信息丢失。经过在两个公开的多模态磁共振数据集上的验证,所提出的方法能有效地处理各种合成任务,与之前的方法相比表现出更优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信