Ke Zhang, Yan Yang, Jun Yu, Jianping Fan, Hanliang Jiang, Qingming Huang, Weidong Han
{"title":"Attribute Prototype-guided Iterative Scene Graph for Explainable Radiology Report Generation.","authors":"Ke Zhang, Yan Yang, Jun Yu, Jianping Fan, Hanliang Jiang, Qingming Huang, Weidong Han","doi":"10.1109/TMI.2024.3424505","DOIUrl":null,"url":null,"abstract":"<p><p>The potential of automated radiology report generation in alleviating the time-consuming tasks of radiologists is increasingly being recognized in medical practice. Existing report generation methods have evolved from using image-level features to the latest approach of utilizing anatomical regions, significantly enhancing interpretability. However, directly and simplistically using region features for report generation compromises the capability of relation reasoning and overlooks the common attributes potentially shared across regions. To address these limitations, we propose a novel region-based Attribute Prototype-guided Iterative Scene Graph generation framework (AP-ISG) for report generation, utilizing scene graph generation as an auxiliary task to further enhance interpretability and relational reasoning capability. The core components of AP-ISG are the Iterative Scene Graph Generation (ISGG) module and the Attribute Prototype-guided Learning (APL) module. Specifically, ISSG employs an autoregressive scheme for structural edge reasoning and a contextualization mechanism for relational reasoning. APL enhances intra-prototype matching and reduces inter-prototype semantic overlap in the visual space to fully model the potential attribute commonalities among regions. Extensive experiments on the MIMIC-CXR with Chest ImaGenome datasets demonstrate the superiority of AP-ISG across multiple metrics.</p>","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TMI.2024.3424505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The potential of automated radiology report generation in alleviating the time-consuming tasks of radiologists is increasingly being recognized in medical practice. Existing report generation methods have evolved from using image-level features to the latest approach of utilizing anatomical regions, significantly enhancing interpretability. However, directly and simplistically using region features for report generation compromises the capability of relation reasoning and overlooks the common attributes potentially shared across regions. To address these limitations, we propose a novel region-based Attribute Prototype-guided Iterative Scene Graph generation framework (AP-ISG) for report generation, utilizing scene graph generation as an auxiliary task to further enhance interpretability and relational reasoning capability. The core components of AP-ISG are the Iterative Scene Graph Generation (ISGG) module and the Attribute Prototype-guided Learning (APL) module. Specifically, ISSG employs an autoregressive scheme for structural edge reasoning and a contextualization mechanism for relational reasoning. APL enhances intra-prototype matching and reduces inter-prototype semantic overlap in the visual space to fully model the potential attribute commonalities among regions. Extensive experiments on the MIMIC-CXR with Chest ImaGenome datasets demonstrate the superiority of AP-ISG across multiple metrics.