"Do not inject our babies": a social listening analysis of public opinion about authorizing pediatric COVID-19 vaccines.

Health affairs scholar Pub Date : 2024-07-08 eCollection Date: 2024-07-01 DOI:10.1093/haschl/qxae082
Aleksandra M Golos, Sharath-Chandra Guntuku, Alison M Buttenheim
{"title":"\"Do not inject our babies\": a social listening analysis of public opinion about authorizing pediatric COVID-19 vaccines.","authors":"Aleksandra M Golos, Sharath-Chandra Guntuku, Alison M Buttenheim","doi":"10.1093/haschl/qxae082","DOIUrl":null,"url":null,"abstract":"<p><p>Designing effective childhood vaccination counseling guidelines, public health campaigns, and school-entry mandates requires a nuanced understanding of the information ecology in which parents make vaccination decisions. However, evidence is lacking on how best to \"catch the signal\" about the public's attitudes, beliefs, and misperceptions. In this study, we characterize public sentiment and discourse about vaccinating children against SARS-CoV-2 with mRNA vaccines to identify prevalent concerns about the vaccine and to understand anti-vaccine rhetorical strategies. We applied computational topic modeling to 149 897 comments submitted to regulations.gov in October 2021 and February 2022 regarding the Food and Drug Administration's Vaccines and Related Biological Products Advisory Committee's emergency use authorization of the COVID-19 vaccines for children. We used a latent Dirichlet allocation topic modeling algorithm to generate topics and then used iterative thematic and discursive analysis to identify relevant domains, themes, and rhetorical strategies. Three domains emerged: (1) specific concerns about the COVID-19 vaccines; (2) foundational beliefs shaping vaccine attitudes; and (3) rhetorical strategies deployed in anti-vaccine arguments. Computational social listening approaches can contribute to misinformation surveillance and evidence-based guidelines for vaccine counseling and public health promotion campaigns.</p>","PeriodicalId":94025,"journal":{"name":"Health affairs scholar","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11229700/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health affairs scholar","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/haschl/qxae082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Designing effective childhood vaccination counseling guidelines, public health campaigns, and school-entry mandates requires a nuanced understanding of the information ecology in which parents make vaccination decisions. However, evidence is lacking on how best to "catch the signal" about the public's attitudes, beliefs, and misperceptions. In this study, we characterize public sentiment and discourse about vaccinating children against SARS-CoV-2 with mRNA vaccines to identify prevalent concerns about the vaccine and to understand anti-vaccine rhetorical strategies. We applied computational topic modeling to 149 897 comments submitted to regulations.gov in October 2021 and February 2022 regarding the Food and Drug Administration's Vaccines and Related Biological Products Advisory Committee's emergency use authorization of the COVID-19 vaccines for children. We used a latent Dirichlet allocation topic modeling algorithm to generate topics and then used iterative thematic and discursive analysis to identify relevant domains, themes, and rhetorical strategies. Three domains emerged: (1) specific concerns about the COVID-19 vaccines; (2) foundational beliefs shaping vaccine attitudes; and (3) rhetorical strategies deployed in anti-vaccine arguments. Computational social listening approaches can contribute to misinformation surveillance and evidence-based guidelines for vaccine counseling and public health promotion campaigns.

"不要给我们的婴儿注射":关于授权小儿 COVID-19 疫苗的公众意见社会倾听分析。
要制定有效的儿童疫苗接种咨询指南、公共卫生运动和入学规定,就必须对家长做出疫苗接种决定时所处的信息生态环境有细致入微的了解。然而,关于如何最好地 "捕捉 "公众的态度、信仰和误解的信号,目前还缺乏证据。在本研究中,我们描述了公众对使用 mRNA 疫苗为儿童接种 SARS-CoV-2 疫苗的看法和讨论,以确定对疫苗的普遍担忧,并了解反疫苗的修辞策略。我们对 2021 年 10 月和 2022 年 2 月提交到 regulations.gov 的 149 897 条评论进行了计算主题建模,这些评论涉及食品药品管理局疫苗及相关生物制品咨询委员会对 COVID-19 儿童疫苗的紧急使用授权。我们使用潜在 Dirichlet 分配主题建模算法生成主题,然后使用迭代主题和话语分析来确定相关领域、主题和修辞策略。结果发现了三个领域:(1) 对 COVID-19 疫苗的具体担忧;(2) 影响疫苗态度的基本信念;(3) 反疫苗论证中使用的修辞策略。计算社会倾听方法有助于对错误信息进行监控,并为疫苗咨询和公共卫生宣传活动提供循证指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信