{"title":"Optimal vaccination strategies for imperfect vaccines and variable host susceptibility","authors":"","doi":"10.1016/j.jtbi.2024.111899","DOIUrl":null,"url":null,"abstract":"<div><p>I present a method to allocate a given number of vaccines to members of a population who differ in their susceptibility to the disease so that the final size of the epidemic is minimised. I consider an arbitrary distribution of protection that the vaccine confers, including the extreme cases of leaky and all-or-none vaccines. The optimal vaccination policy depends on the distribution of protection. While for low values of the basic reproduction number <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> the optimal policy prioritises the most susceptible hosts, I show that for almost any distribution the order of priority reverses and the least susceptible hosts should be vaccinated when <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is high. The exception where this does not happen is the all-or-none vaccine. However, even a small deviation from the ideal all-or-none distribution can imply that the limited number of vaccines should be given to less susceptible hosts already at realistic values of <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>.</p></div>","PeriodicalId":54763,"journal":{"name":"Journal of Theoretical Biology","volume":"594 ","pages":"Article 111899"},"PeriodicalIF":1.9000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022519324001838/pdfft?md5=5e38fc8926f56bb11f2db70a92ba3aff&pid=1-s2.0-S0022519324001838-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022519324001838","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
I present a method to allocate a given number of vaccines to members of a population who differ in their susceptibility to the disease so that the final size of the epidemic is minimised. I consider an arbitrary distribution of protection that the vaccine confers, including the extreme cases of leaky and all-or-none vaccines. The optimal vaccination policy depends on the distribution of protection. While for low values of the basic reproduction number the optimal policy prioritises the most susceptible hosts, I show that for almost any distribution the order of priority reverses and the least susceptible hosts should be vaccinated when is high. The exception where this does not happen is the all-or-none vaccine. However, even a small deviation from the ideal all-or-none distribution can imply that the limited number of vaccines should be given to less susceptible hosts already at realistic values of .
期刊介绍:
The Journal of Theoretical Biology is the leading forum for theoretical perspectives that give insight into biological processes. It covers a very wide range of topics and is of interest to biologists in many areas of research, including:
• Brain and Neuroscience
• Cancer Growth and Treatment
• Cell Biology
• Developmental Biology
• Ecology
• Evolution
• Immunology,
• Infectious and non-infectious Diseases,
• Mathematical, Computational, Biophysical and Statistical Modeling
• Microbiology, Molecular Biology, and Biochemistry
• Networks and Complex Systems
• Physiology
• Pharmacodynamics
• Animal Behavior and Game Theory
Acceptable papers are those that bear significant importance on the biology per se being presented, and not on the mathematical analysis. Papers that include some data or experimental material bearing on theory will be considered, including those that contain comparative study, statistical data analysis, mathematical proof, computer simulations, experiments, field observations, or even philosophical arguments, which are all methods to support or reject theoretical ideas. However, there should be a concerted effort to make papers intelligible to biologists in the chosen field.