An acidic loop in the forkhead-associated domain of the yeast meiosis-specific kinase Mek1 interacts with a specific motif in a subset of Mek1 substrates.

IF 3.3 3区 生物学 Q2 GENETICS & HEREDITY
Genetics Pub Date : 2024-09-04 DOI:10.1093/genetics/iyae106
Qixuan Weng, Lihong Wan, Geburah C Straker, Tom D Deegan, Bernard P Duncker, Aaron M Neiman, Ed Luk, Nancy M Hollingsworth
{"title":"An acidic loop in the forkhead-associated domain of the yeast meiosis-specific kinase Mek1 interacts with a specific motif in a subset of Mek1 substrates.","authors":"Qixuan Weng, Lihong Wan, Geburah C Straker, Tom D Deegan, Bernard P Duncker, Aaron M Neiman, Ed Luk, Nancy M Hollingsworth","doi":"10.1093/genetics/iyae106","DOIUrl":null,"url":null,"abstract":"<p><p>The meiosis-specific kinase Mek1 regulates key steps in meiotic recombination in the budding yeast, Saccharomyces cerevisiae. MEK1 limits resection at double-strand break (DSB) ends and is required for preferential strand invasion into homologs, a process known as interhomolog bias. After strand invasion, MEK1 promotes phosphorylation of the synaptonemal complex protein Zip1 that is necessary for DSB repair mediated by a crossover-specific pathway that enables chromosome synapsis. In addition, Mek1 phosphorylation of the meiosis-specific transcription factor, Ndt80, regulates the meiotic recombination checkpoint that prevents exit from pachytene when DSBs are present. Mek1 interacts with Ndt80 through a 5-amino acid sequence, RPSKR, located between the DNA-binding and activation domains of Ndt80. AlphaFold Multimer modeling of a fragment of Ndt80 containing the RPSKR motif and full-length Mek1 indicated that RPSKR binds to an acidic loop located in the Mek1 FHA domain, a noncanonical interaction with this motif. A second protein, the 5'-3' helicase Rrm3, similarly interacts with Mek1 through an RPAKR motif and is an in vitro substrate of Mek1. Genetic analysis using various mutants in the MEK1 acidic loop validated the AlphaFold model, in that they specifically disrupt 2-hybrid interactions with Ndt80 and Rrm3. Phenotypic analyses further showed that the acidic loop mutants are defective in the meiotic recombination checkpoint and, in certain circumstances, exhibit more severe phenotypes compared to the NDT80 mutant with the RPSKR sequence deleted, suggesting that additional, as yet unknown, substrates of Mek1 also bind to Mek1 using an RPXKR motif.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11373509/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/genetics/iyae106","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

The meiosis-specific kinase Mek1 regulates key steps in meiotic recombination in the budding yeast, Saccharomyces cerevisiae. MEK1 limits resection at double-strand break (DSB) ends and is required for preferential strand invasion into homologs, a process known as interhomolog bias. After strand invasion, MEK1 promotes phosphorylation of the synaptonemal complex protein Zip1 that is necessary for DSB repair mediated by a crossover-specific pathway that enables chromosome synapsis. In addition, Mek1 phosphorylation of the meiosis-specific transcription factor, Ndt80, regulates the meiotic recombination checkpoint that prevents exit from pachytene when DSBs are present. Mek1 interacts with Ndt80 through a 5-amino acid sequence, RPSKR, located between the DNA-binding and activation domains of Ndt80. AlphaFold Multimer modeling of a fragment of Ndt80 containing the RPSKR motif and full-length Mek1 indicated that RPSKR binds to an acidic loop located in the Mek1 FHA domain, a noncanonical interaction with this motif. A second protein, the 5'-3' helicase Rrm3, similarly interacts with Mek1 through an RPAKR motif and is an in vitro substrate of Mek1. Genetic analysis using various mutants in the MEK1 acidic loop validated the AlphaFold model, in that they specifically disrupt 2-hybrid interactions with Ndt80 and Rrm3. Phenotypic analyses further showed that the acidic loop mutants are defective in the meiotic recombination checkpoint and, in certain circumstances, exhibit more severe phenotypes compared to the NDT80 mutant with the RPSKR sequence deleted, suggesting that additional, as yet unknown, substrates of Mek1 also bind to Mek1 using an RPXKR motif.

酵母减数分裂特异性激酶 Mek1 的 FHA 结构域中的一个酸性环与 Mek1 底物亚群中的一个特定图案相互作用。
减数分裂特异性激酶Mek1调控着芽殖酵母(Saccharomyces cerevisiae)减数分裂重组的关键步骤。MEK1 限制了双链断裂(DSB)末端的切除,并且是链优先侵入同源物所必需的,这一过程被称为同源物间偏向。链侵入后,MEK1 会促进突触复合体蛋白 Zip1 的磷酸化,而 Zip1 是由交叉特异性途径介导的 DSB 修复所必需的,它能使染色体发生突触。此外,Mek1 磷酸化减数分裂特异性转录因子 Ndt80,可调节减数分裂重组检查点,防止出现 DSB 时退出减数分裂中期。Mek1 通过位于 Ndt80 DNA 结合结构域和激活结构域之间的 5 个氨基酸序列 RPSKR 与 Ndt80 相互作用。含有 RPSKR 主题的 Ndt80 片段和全长 Mek1 的 AlphaFold 多聚体建模表明,RPSKR 与 Mek1 FHA 结构域中的一个酸性环结合,这是与该主题的非经典相互作用。第二种蛋白质--5'-3'螺旋酶 Rrm3 也同样通过 RPAKR 基序与 Mek1 相互作用,并且是 Mek1 的体外底物。利用 MEK1 酸性环中的各种突变体进行的遗传分析验证了 AlphaFold 模型,因为这些突变体特异性地破坏了与 Ndt80 和 Rrm3 的双杂交相互作用。表型分析进一步表明,酸性环突变体在减数分裂重组检查点中存在缺陷,而且在某些情况下,与删除了 RPSKR 序列的 NDT80 突变体相比,表现出更严重的表型,这表明 Mek1 的其他未知底物也使用 RPXKR 基序与 Mek1 结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Genetics
Genetics GENETICS & HEREDITY-
CiteScore
6.90
自引率
6.10%
发文量
177
审稿时长
1.5 months
期刊介绍: GENETICS is published by the Genetics Society of America, a scholarly society that seeks to deepen our understanding of the living world by advancing our understanding of genetics. Since 1916, GENETICS has published high-quality, original research presenting novel findings bearing on genetics and genomics. The journal publishes empirical studies of organisms ranging from microbes to humans, as well as theoretical work. While it has an illustrious history, GENETICS has changed along with the communities it serves: it is not your mentor''s journal. The editors make decisions quickly – in around 30 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is a peer reviewed, peer-edited journal, with an international reach and increasing visibility and impact. All editorial decisions are made through collaboration of at least two editors who are practicing scientists. GENETICS is constantly innovating: expanded types of content include Reviews, Commentary (current issues of interest to geneticists), Perspectives (historical), Primers (to introduce primary literature into the classroom), Toolbox Reviews, plus YeastBook, FlyBook, and WormBook (coming spring 2016). For particularly time-sensitive results, we publish Communications. As part of our mission to serve our communities, we''ve published thematic collections, including Genomic Selection, Multiparental Populations, Mouse Collaborative Cross, and the Genetics of Sex.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信