Chemical space exploration with Molpher: Generating and assessing a glucocorticoid receptor ligand library.

IF 2.8 4区 医学 Q3 CHEMISTRY, MEDICINAL
Molecular Informatics Pub Date : 2024-08-01 Epub Date: 2024-07-09 DOI:10.1002/minf.202300316
M Isabel Agea, Ivan Čmelo, Wim Dehaen, Ya Chen, Johannes Kirchmair, David Sedlák, Petr Bartůněk, Martin Šícho, Daniel Svozil
{"title":"Chemical space exploration with Molpher: Generating and assessing a glucocorticoid receptor ligand library.","authors":"M Isabel Agea, Ivan Čmelo, Wim Dehaen, Ya Chen, Johannes Kirchmair, David Sedlák, Petr Bartůněk, Martin Šícho, Daniel Svozil","doi":"10.1002/minf.202300316","DOIUrl":null,"url":null,"abstract":"<p><p>Computational exploration of chemical space is crucial in modern cheminformatics research for accelerating the discovery of new biologically active compounds. In this study, we present a detailed analysis of the chemical library of potential glucocorticoid receptor (GR) ligands generated by the molecular generator, Molpher. To generate the targeted GR library and construct the classification models, structures from the ChEMBL database as well as from the internal IMG library, which was experimentally screened for biological activity in the primary luciferase reporter cell assay, were utilized. The composition of the targeted GR ligand library was compared with a reference library that randomly samples chemical space. A random forest model was used to determine the biological activity of ligands, incorporating its applicability domain using conformal prediction. It was demonstrated that the GR library is significantly enriched with GR ligands compared to the random library. Furthermore, a prospective analysis demonstrated that Molpher successfully designed compounds, which were subsequently experimentally confirmed to be active on the GR. A collection of 34 potential new GR ligands was also identified. Moreover, an important contribution of this study is the establishment of a comprehensive workflow for evaluating computationally generated ligands, particularly those with potential activity against targets that are challenging to dock.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":" ","pages":"e202300316"},"PeriodicalIF":2.8000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/minf.202300316","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Computational exploration of chemical space is crucial in modern cheminformatics research for accelerating the discovery of new biologically active compounds. In this study, we present a detailed analysis of the chemical library of potential glucocorticoid receptor (GR) ligands generated by the molecular generator, Molpher. To generate the targeted GR library and construct the classification models, structures from the ChEMBL database as well as from the internal IMG library, which was experimentally screened for biological activity in the primary luciferase reporter cell assay, were utilized. The composition of the targeted GR ligand library was compared with a reference library that randomly samples chemical space. A random forest model was used to determine the biological activity of ligands, incorporating its applicability domain using conformal prediction. It was demonstrated that the GR library is significantly enriched with GR ligands compared to the random library. Furthermore, a prospective analysis demonstrated that Molpher successfully designed compounds, which were subsequently experimentally confirmed to be active on the GR. A collection of 34 potential new GR ligands was also identified. Moreover, an important contribution of this study is the establishment of a comprehensive workflow for evaluating computationally generated ligands, particularly those with potential activity against targets that are challenging to dock.

利用 Molpher 探索化学空间:生成并评估糖皮质激素受体配体库。
在现代化学信息学研究中,化学空间的计算探索对于加速发现新的生物活性化合物至关重要。在本研究中,我们详细分析了分子生成器 Molpher 生成的潜在糖皮质激素受体(GR)配体化学库。为了生成靶向 GR 库并构建分类模型,我们利用了 ChEMBL 数据库以及内部 IMG 库中的结构。将目标 GR 配体库的组成与随机抽样化学空间的参考库进行了比较。采用随机森林模型确定配体的生物活性,并利用保形预测将其适用范围纳入其中。结果表明,与随机库相比,GR 库明显富含 GR 配体。此外,一项前瞻性分析表明,Molpher 成功地设计出了一些化合物,这些化合物随后被实验证实对 GR 具有活性。同时还发现了 34 种潜在的新 GR 配体。此外,这项研究的一个重要贡献是建立了一套全面的工作流程,用于评估通过计算生成的配体,特别是那些对具有潜在活性的靶标具有对接挑战性的配体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Informatics
Molecular Informatics CHEMISTRY, MEDICINAL-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
7.30
自引率
2.80%
发文量
70
审稿时长
3 months
期刊介绍: Molecular Informatics is a peer-reviewed, international forum for publication of high-quality, interdisciplinary research on all molecular aspects of bio/cheminformatics and computer-assisted molecular design. Molecular Informatics succeeded QSAR & Combinatorial Science in 2010. Molecular Informatics presents methodological innovations that will lead to a deeper understanding of ligand-receptor interactions, macromolecular complexes, molecular networks, design concepts and processes that demonstrate how ideas and design concepts lead to molecules with a desired structure or function, preferably including experimental validation. The journal''s scope includes but is not limited to the fields of drug discovery and chemical biology, protein and nucleic acid engineering and design, the design of nanomolecular structures, strategies for modeling of macromolecular assemblies, molecular networks and systems, pharmaco- and chemogenomics, computer-assisted screening strategies, as well as novel technologies for the de novo design of biologically active molecules. As a unique feature Molecular Informatics publishes so-called "Methods Corner" review-type articles which feature important technological concepts and advances within the scope of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信