{"title":"Nonclinical safety and immunogenicity assessment of a combined DTacP vaccine in animal models","authors":"Shihui Li, Hui Fu, Shouzhi Yu, Yuxiu Zhao, Ting Liu, Ling Wang, Na Zhang, Wei Wang, Baifeng Yang, Peng He, Yancen Guo, Shaoting Qiu, Yuntao Zhang","doi":"10.1002/jat.4668","DOIUrl":null,"url":null,"abstract":"<p>The (diphtheria, tetanus, and pertussis [acellular, component] [DTacP]) vaccine is a combined vaccine designed to prevent three potentially fatal diseases including pertussis, tetanus, and diphtheria in both children and adults. We utilized advanced technology to develop a novel DTacP vaccine that was previously unavailable in China. The nonclinical studies were performed to evaluate the immunogenicity, potential toxicity, and local tolerance of the vaccine in animal models. In the immunogenicity study, three batches of the vaccine were intraperitoneally administered to National Institutes of Health (NIH) mice, resulting in 100% seropositivity for all three batches. Additionally, antibody levels notably increased as the immunization dosage increased. In acute toxicity study, no mortality was observed among the animals during the 14-day observation period, and no abnormalities in clinical signs were reported. Active systemic anaphylaxis assessment in guinea pigs showed no evidence of serious allergic reactions in the vaccine groups. In the repeat-dose toxicity study, where five intramuscular doses were administered every 2 weeks, gross autopsy and histopathological examination revealed no vaccine-related systemic pathological changes in rats, with dose site irritant reactions mostly recovered at the end of recovery period. In conclusion, the vaccine demonstrated good local and systemic tolerance, supporting its clinical development.</p>","PeriodicalId":15242,"journal":{"name":"Journal of Applied Toxicology","volume":"44 11","pages":"1689-1699"},"PeriodicalIF":2.7000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jat.4668","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jat.4668","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The (diphtheria, tetanus, and pertussis [acellular, component] [DTacP]) vaccine is a combined vaccine designed to prevent three potentially fatal diseases including pertussis, tetanus, and diphtheria in both children and adults. We utilized advanced technology to develop a novel DTacP vaccine that was previously unavailable in China. The nonclinical studies were performed to evaluate the immunogenicity, potential toxicity, and local tolerance of the vaccine in animal models. In the immunogenicity study, three batches of the vaccine were intraperitoneally administered to National Institutes of Health (NIH) mice, resulting in 100% seropositivity for all three batches. Additionally, antibody levels notably increased as the immunization dosage increased. In acute toxicity study, no mortality was observed among the animals during the 14-day observation period, and no abnormalities in clinical signs were reported. Active systemic anaphylaxis assessment in guinea pigs showed no evidence of serious allergic reactions in the vaccine groups. In the repeat-dose toxicity study, where five intramuscular doses were administered every 2 weeks, gross autopsy and histopathological examination revealed no vaccine-related systemic pathological changes in rats, with dose site irritant reactions mostly recovered at the end of recovery period. In conclusion, the vaccine demonstrated good local and systemic tolerance, supporting its clinical development.
期刊介绍:
Journal of Applied Toxicology publishes peer-reviewed original reviews and hypothesis-driven research articles on mechanistic, fundamental and applied research relating to the toxicity of drugs and chemicals at the molecular, cellular, tissue, target organ and whole body level in vivo (by all relevant routes of exposure) and in vitro / ex vivo. All aspects of toxicology are covered (including but not limited to nanotoxicology, genomics and proteomics, teratogenesis, carcinogenesis, mutagenesis, reproductive and endocrine toxicology, toxicopathology, target organ toxicity, systems toxicity (eg immunotoxicity), neurobehavioral toxicology, mechanistic studies, biochemical and molecular toxicology, novel biomarkers, pharmacokinetics/PBPK, risk assessment and environmental health studies) and emphasis is given to papers of clear application to human health, and/or advance mechanistic understanding and/or provide significant contributions and impact to their field.