Nathália Ronconi-Krüger, Yara Maria Rauh Müller, Evelise Maria Nazari
{"title":"Exploring developmental MeHg impact on extraembryonic and cardiac vessels and its effect on cardiomyocyte contractility","authors":"Nathália Ronconi-Krüger, Yara Maria Rauh Müller, Evelise Maria Nazari","doi":"10.1002/jat.4661","DOIUrl":null,"url":null,"abstract":"<p>The toxicity of methylmercury (MeHg) during embryonic development is a relevant issue that remains unclear and deserves investigation. In this sense, there is evidence that links the intake of contaminated food with cardiovascular pathologies in human adults and children. Thus, this study aimed to verify the impact of MeHg on the structure and integrity of extraembryonic and cardiac blood vessels and the contractile function of cardiomyocytes, also evaluating embryonic weight and the cardiosomatic index (CSI). Thus, chicken embryos, used as an experimental model, were exposed to a single dose of 0.1 μg MeHg/50 μl saline at E1.5 and analyzed at E10. After exposure, an increase in the number of extraembryonic blood vessels and the veins of the cardiac tissue was observed. These increases were accompanied by a reduction in the content of VEGF and VCAM proteins related to vessel growth and adhesiveness. Together, these results were related to reduced nitrite (NOx) levels. Furthermore, MeHg reduces the number of sarcomeres and increases the content of cardiac troponin I (cTnI), a protein that regulates contraction. In general, exposure to MeHg affected the integrity of extraembryonic and cardiac vessels and the contractile function of cardiomyocytes, which had a systemic impact evidenced by the reduction in embryonic weight gain and CSI.</p>","PeriodicalId":15242,"journal":{"name":"Journal of Applied Toxicology","volume":"44 11","pages":"1679-1688"},"PeriodicalIF":2.7000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jat.4661","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The toxicity of methylmercury (MeHg) during embryonic development is a relevant issue that remains unclear and deserves investigation. In this sense, there is evidence that links the intake of contaminated food with cardiovascular pathologies in human adults and children. Thus, this study aimed to verify the impact of MeHg on the structure and integrity of extraembryonic and cardiac blood vessels and the contractile function of cardiomyocytes, also evaluating embryonic weight and the cardiosomatic index (CSI). Thus, chicken embryos, used as an experimental model, were exposed to a single dose of 0.1 μg MeHg/50 μl saline at E1.5 and analyzed at E10. After exposure, an increase in the number of extraembryonic blood vessels and the veins of the cardiac tissue was observed. These increases were accompanied by a reduction in the content of VEGF and VCAM proteins related to vessel growth and adhesiveness. Together, these results were related to reduced nitrite (NOx) levels. Furthermore, MeHg reduces the number of sarcomeres and increases the content of cardiac troponin I (cTnI), a protein that regulates contraction. In general, exposure to MeHg affected the integrity of extraembryonic and cardiac vessels and the contractile function of cardiomyocytes, which had a systemic impact evidenced by the reduction in embryonic weight gain and CSI.
期刊介绍:
Journal of Applied Toxicology publishes peer-reviewed original reviews and hypothesis-driven research articles on mechanistic, fundamental and applied research relating to the toxicity of drugs and chemicals at the molecular, cellular, tissue, target organ and whole body level in vivo (by all relevant routes of exposure) and in vitro / ex vivo. All aspects of toxicology are covered (including but not limited to nanotoxicology, genomics and proteomics, teratogenesis, carcinogenesis, mutagenesis, reproductive and endocrine toxicology, toxicopathology, target organ toxicity, systems toxicity (eg immunotoxicity), neurobehavioral toxicology, mechanistic studies, biochemical and molecular toxicology, novel biomarkers, pharmacokinetics/PBPK, risk assessment and environmental health studies) and emphasis is given to papers of clear application to human health, and/or advance mechanistic understanding and/or provide significant contributions and impact to their field.