Fixed-target pump–probe SFX: eliminating the scourge of light contamination

IF 2.9 2区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
IUCrJ Pub Date : 2024-09-01 DOI:10.1107/S2052252524005591
{"title":"Fixed-target pump–probe SFX: eliminating the scourge of light contamination","authors":"","doi":"10.1107/S2052252524005591","DOIUrl":null,"url":null,"abstract":"<div><p>Time-resolved serial femtosecond crystallography experiments can be performed with samples delivered on solid supports. Sample consumption is significantly reduced when compared with the popular crystal-delivery system via high-viscosity extrusion.</p></div><div><p>X-ray free-electron laser (XFEL) light sources have enabled the rapid growth of time-resolved structural experiments, which provide crucial information on the function of macromolecules and their mechanisms. Here, the aim was to commission the SwissMX fixed-target sample-delivery system at the SwissFEL Cristallina experimental station using the PSI-developed micro-structured polymer (MISP) chip for pump–probe time-resolved experiments. To characterize the system, crystals of the light-sensitive protein light–oxygen–voltage domain 1 (LOV1) from <em>Chlamydomonas reinhardtii</em> were used. Using different experimental settings, the accidental illumination, referred to as light contamination, of crystals mounted in wells adjacent to those illuminated by the pump laser was examined. It was crucial to control the light scattering from and through the solid supports otherwise significant contamination occurred. However, the results here show that the opaque MISP chips are suitable for defined pump–probe studies of a light-sensitive protein. The experiment also probed the sub-millisecond structural dynamics of LOV1 and indicated that at Δ<em>t</em> = 10 µs a covalent thio­ether bond is established between reactive Cys57 and its flavin mononucleotide cofactor. This experiment validates the crystals to be suitable for in-depth follow-up studies of this still poorly understood signal-transduction mechanism. Importantly, the fixed-target delivery system also permitted a tenfold reduction in protein sample consumption compared with the more common high-viscosity extrusion-based delivery system. This development creates the prospect of an increase in XFEL project throughput for the field.</p></div>","PeriodicalId":14775,"journal":{"name":"IUCrJ","volume":"11 5","pages":"Pages 749-761"},"PeriodicalIF":2.9000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11364036/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IUCrJ","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S2052252524000757","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Time-resolved serial femtosecond crystallography experiments can be performed with samples delivered on solid supports. Sample consumption is significantly reduced when compared with the popular crystal-delivery system via high-viscosity extrusion.

X-ray free-electron laser (XFEL) light sources have enabled the rapid growth of time-resolved structural experiments, which provide crucial information on the function of macromolecules and their mechanisms. Here, the aim was to commission the SwissMX fixed-target sample-delivery system at the SwissFEL Cristallina experimental station using the PSI-developed micro-structured polymer (MISP) chip for pump–probe time-resolved experiments. To characterize the system, crystals of the light-sensitive protein light–oxygen–voltage domain 1 (LOV1) from Chlamydomonas reinhardtii were used. Using different experimental settings, the accidental illumination, referred to as light contamination, of crystals mounted in wells adjacent to those illuminated by the pump laser was examined. It was crucial to control the light scattering from and through the solid supports otherwise significant contamination occurred. However, the results here show that the opaque MISP chips are suitable for defined pump–probe studies of a light-sensitive protein. The experiment also probed the sub-millisecond structural dynamics of LOV1 and indicated that at Δt = 10 µs a covalent thio­ether bond is established between reactive Cys57 and its flavin mononucleotide cofactor. This experiment validates the crystals to be suitable for in-depth follow-up studies of this still poorly understood signal-transduction mechanism. Importantly, the fixed-target delivery system also permitted a tenfold reduction in protein sample consumption compared with the more common high-viscosity extrusion-based delivery system. This development creates the prospect of an increase in XFEL project throughput for the field.

固定目标泵探头 SFX:消除光污染的祸害。
X 射线自由电子激光(XFEL)光源使时间分辨结构实验得以迅速发展,这些实验提供了有关大分子功能及其机制的重要信息。在这里,我们的目的是利用 PSI 开发的用于泵浦探针时间分辨实验的微结构聚合物(MISP)芯片,在 SwissFEL Cristallina 实验站调试 SwissMX 固定目标样品传送系统。为了描述该系统的特性,使用了来自莱茵衣藻的光敏蛋白光氧电压结构域 1(LOV1)的晶体。利用不同的实验设置,研究了安装在与泵浦激光照射的晶体孔相邻的晶体孔中的意外照射(称为光污染)。控制来自固体支撑物和穿过固体支撑物的光散射至关重要,否则会造成严重污染。不过,实验结果表明,不透明的 MISP 芯片适用于对光敏感蛋白质进行确定的泵浦探针研究。实验还探测了 LOV1 的亚毫秒级结构动态,结果表明,在 Δt = 10 µs 时,活性 Cys57 与其黄素单核苷酸辅助因子之间建立了共价硫醚键。这一实验验证了晶体适用于对这一仍鲜为人知的信号转导机制进行深入的后续研究。重要的是,与更常见的高粘度挤压式输送系统相比,固定目标输送系统还能将蛋白质样品消耗量减少十倍。这一发展为提高 XFEL 项目在该领域的吞吐量创造了前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IUCrJ
IUCrJ CHEMISTRY, MULTIDISCIPLINARYCRYSTALLOGRAPH-CRYSTALLOGRAPHY
CiteScore
7.50
自引率
5.10%
发文量
95
审稿时长
10 weeks
期刊介绍: IUCrJ is a new fully open-access peer-reviewed journal from the International Union of Crystallography (IUCr). The journal will publish high-profile articles on all aspects of the sciences and technologies supported by the IUCr via its commissions, including emerging fields where structural results underpin the science reported in the article. Our aim is to make IUCrJ the natural home for high-quality structural science results. Chemists, biologists, physicists and material scientists will be actively encouraged to report their structural studies in IUCrJ.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信