Histone H3.3 chaperone HIRA renders stress-responsive genes poised for prospective lethal stresses in acquired tolerance

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yoshikazu Nagagaki, Yuji Kozakura, Theventhiran Mahandaran, Yukiko Fumoto, Ryuichiro Nakato, Katsuhiko Shirahige, Fuyuki Ishikawa
{"title":"Histone H3.3 chaperone HIRA renders stress-responsive genes poised for prospective lethal stresses in acquired tolerance","authors":"Yoshikazu Nagagaki,&nbsp;Yuji Kozakura,&nbsp;Theventhiran Mahandaran,&nbsp;Yukiko Fumoto,&nbsp;Ryuichiro Nakato,&nbsp;Katsuhiko Shirahige,&nbsp;Fuyuki Ishikawa","doi":"10.1111/gtc.13140","DOIUrl":null,"url":null,"abstract":"<p>Appropriate responses to environmental challenges are imperative for the survival of all living organisms. Exposure to low-dose stresses is recognized to yield increased cellular fitness, a phenomenon termed hormesis. However, our molecular understanding of how cells respond to low-dose stress remains profoundly limited. Here we report that histone variant H3.3-specific chaperone, HIRA, is required for acquired tolerance, where low-dose heat stress exposure confers resistance to subsequent lethal heat stress. We found that human HIRA activates stress-responsive genes, including <i>HSP70</i>, by depositing histone H3.3 following low-dose stresses. These genes are also marked with histone H3 Lys-4 trimethylation and H3 Lys-9 acetylation, both active chromatin markers. Moreover, depletion of HIRA greatly diminished acquired tolerance, both in normal diploid fibroblasts and in HeLa cells. Collectively, our study revealed that HIRA is required for eliciting adaptive stress responses under environmental fluctuations and is a master regulator of stress tolerance.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gtc.13140","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gtc.13140","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Appropriate responses to environmental challenges are imperative for the survival of all living organisms. Exposure to low-dose stresses is recognized to yield increased cellular fitness, a phenomenon termed hormesis. However, our molecular understanding of how cells respond to low-dose stress remains profoundly limited. Here we report that histone variant H3.3-specific chaperone, HIRA, is required for acquired tolerance, where low-dose heat stress exposure confers resistance to subsequent lethal heat stress. We found that human HIRA activates stress-responsive genes, including HSP70, by depositing histone H3.3 following low-dose stresses. These genes are also marked with histone H3 Lys-4 trimethylation and H3 Lys-9 acetylation, both active chromatin markers. Moreover, depletion of HIRA greatly diminished acquired tolerance, both in normal diploid fibroblasts and in HeLa cells. Collectively, our study revealed that HIRA is required for eliciting adaptive stress responses under environmental fluctuations and is a master regulator of stress tolerance.

Abstract Image

组蛋白 H3.3 合子 HIRA 使应激反应基因在获得性耐受中准备好应对未来的致命应激。
对环境挑战做出适当反应是所有生物体生存的必要条件。人们认识到,暴露于低剂量应激会增加细胞的适应能力,这种现象被称为激素作用。然而,我们对细胞如何应对低剂量应激的分子认识仍然非常有限。在这里,我们报告了组蛋白变体 H3.3 特异性伴侣 HIRA 是获得性耐受所必需的。我们发现,人HIRA在低剂量应激后通过沉积组蛋白H3.3激活包括HSP70在内的应激反应基因。这些基因还具有组蛋白 H3 Lys-4 三甲基化和 H3 Lys-9 乙酰化的标记,这两种标记都是活跃的染色质标记。此外,在正常二倍体成纤维细胞和 HeLa 细胞中,HIRA 的耗竭会大大降低获得性耐受性。总之,我们的研究揭示了HIRA是在环境波动下激发适应性应激反应所必需的,并且是应激耐受性的主调节因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信