An improved DIIS method using a versatile residual matrix to accelerate SCF starting from a crude guess

IF 3.4 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Linping Hu, Yanoar Pribadi Sarwono, Yonglong Ding, Fang He, Rui-Qin Zhang
{"title":"An improved DIIS method using a versatile residual matrix to accelerate SCF starting from a crude guess","authors":"Linping Hu,&nbsp;Yanoar Pribadi Sarwono,&nbsp;Yonglong Ding,&nbsp;Fang He,&nbsp;Rui-Qin Zhang","doi":"10.1002/jcc.27463","DOIUrl":null,"url":null,"abstract":"<p>The minimization of the commutator of the Fock and density matrices as the error matrix in the direct inversion of the iterative subspace (CDIIS) developed by Pulay is a powerful self-consistent field (SCF) acceleration technique for the construction of optimum Fock matrix, if initiated with a fair initial guess. In this work, we present an alternative minimized error matrix to the commutator in the CDIIS, namely the residual or the gradient of the energy-functional for a Slater determinant subject to the orthonormality constraints among orbitals, representing the search for a newly improved Fock matrix in the direction of the residual in the direct inversion of the iterative subspace (RDIIS). Implemented in the computational chemistry package GAMESS, the RDIIS is compared with the standard CDIIS and the second order SCF orbital optimization (SOSCF) for tested molecules started with a crude guess. As a result, the RDIIS stably and efficiently performs the SCF convergence acceleration. Furthermore, the RDIIS is considerably independent on the subspace size with the concentrated linear coefficients accounting proportionally for the Fock matrices close to the current iteration.</p>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"45 30","pages":"2539-2546"},"PeriodicalIF":3.4000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcc.27463","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The minimization of the commutator of the Fock and density matrices as the error matrix in the direct inversion of the iterative subspace (CDIIS) developed by Pulay is a powerful self-consistent field (SCF) acceleration technique for the construction of optimum Fock matrix, if initiated with a fair initial guess. In this work, we present an alternative minimized error matrix to the commutator in the CDIIS, namely the residual or the gradient of the energy-functional for a Slater determinant subject to the orthonormality constraints among orbitals, representing the search for a newly improved Fock matrix in the direction of the residual in the direct inversion of the iterative subspace (RDIIS). Implemented in the computational chemistry package GAMESS, the RDIIS is compared with the standard CDIIS and the second order SCF orbital optimization (SOSCF) for tested molecules started with a crude guess. As a result, the RDIIS stably and efficiently performs the SCF convergence acceleration. Furthermore, the RDIIS is considerably independent on the subspace size with the concentrated linear coefficients accounting proportionally for the Fock matrices close to the current iteration.

Abstract Image

一种改进的 DIIS 方法,利用多功能残差矩阵从粗略猜测开始加速 SCF。
在 Pulay 开发的迭代子空间直接反演(CDIIS)中,将 Fock 矩阵和密度矩阵的换算器最小化作为误差矩阵,是一种强大的自洽场(SCF)加速技术,可用于构建最优 Fock 矩阵。在这项工作中,我们提出了一种替代 CDIIS 中换向器的最小化误差矩阵,即受轨道间正交性约束的斯莱特行列式的残差或能量函数梯度,代表了在直接反演迭代子空间(RDIIS)中沿着残差方向寻找新改进的 Fock 矩阵。RDIIS 已在计算化学软件包 GAMESS 中实现,并与标准 CDIIS 和二阶 SCF 轨道优化(SOSCF)进行了比较。结果表明,RDIIS 稳定而高效地完成了 SCF 收敛加速。此外,RDIIS 在很大程度上与子空间大小无关,其集中的线性系数与当前迭代的 Fock 矩阵成比例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.60
自引率
3.30%
发文量
247
审稿时长
1.7 months
期刊介绍: This distinguished journal publishes articles concerned with all aspects of computational chemistry: analytical, biological, inorganic, organic, physical, and materials. The Journal of Computational Chemistry presents original research, contemporary developments in theory and methodology, and state-of-the-art applications. Computational areas that are featured in the journal include ab initio and semiempirical quantum mechanics, density functional theory, molecular mechanics, molecular dynamics, statistical mechanics, cheminformatics, biomolecular structure prediction, molecular design, and bioinformatics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信