Au depositing and Mg doping synergistically regulates an In2O3 photocatalyst for promoting CO2 reduction and CH4 exclusive generation†

IF 6.4 1区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Yanduo Liu, Jiadong Li, Xianglan Dong, Lina Dai and Enqi Zhang
{"title":"Au depositing and Mg doping synergistically regulates an In2O3 photocatalyst for promoting CO2 reduction and CH4 exclusive generation†","authors":"Yanduo Liu, Jiadong Li, Xianglan Dong, Lina Dai and Enqi Zhang","doi":"10.1039/D4QI01381F","DOIUrl":null,"url":null,"abstract":"<p >The photocatalytic reduction of carbon dioxide (CO<small><sub>2</sub></small>) into methane (CH<small><sub>4</sub></small>) is of great significance in the field of energy conversion. In this study, magnesium–gold (Mg–Au) bimetallic-modified indium oxide (In<small><sub>2</sub></small>O<small><sub>3</sub></small>) microspheres were synthesized using a hydrothermal method combined with self-reduction. The introduction of Mg doping resulted in a transformation of CO<small><sub>2</sub></small> reduction products from a mixture (CO and CH<small><sub>4</sub></small>) to a single CH<small><sub>4</sub></small> product. Furthermore, the subsequent modification with Au nanoparticles (4Au/2Mg–In<small><sub>2</sub></small>O<small><sub>3</sub></small>, 24.5 μmol g<small><sup>−1</sup></small> h<small><sup>−1</sup></small>) led to a remarkable 12-fold increase in CH<small><sub>4</sub></small> production compared with pure In<small><sub>2</sub></small>O<small><sub>3</sub></small> (2.1 μmol g<small><sup>−1</sup></small> h<small><sup>−1</sup></small>). This enhancement can be attributed to the lowered conduction band position of In<small><sub>2</sub></small>O<small><sub>3</sub></small> caused by Mg doping, which directs the photogenerated electrons towards the reduction of CO<small><sub>2</sub></small> to CH<small><sub>4</sub></small>. The presence of Au nanoparticles further facilitates the effective activation of CO<small><sub>2</sub></small>. Moreover, the specific adsorption of CO<small><sub>2</sub></small> by Mg also contributes to the CO<small><sub>2</sub></small> reduction reaction. The bimetallic functional site modification strategy employed in this study provides a meaningful approach to enhance the performance of photocatalysts for CO<small><sub>2</sub></small> reduction.</p>","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":" 16","pages":" 5310-5318"},"PeriodicalIF":6.4000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/qi/d4qi01381f","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

The photocatalytic reduction of carbon dioxide (CO2) into methane (CH4) is of great significance in the field of energy conversion. In this study, magnesium–gold (Mg–Au) bimetallic-modified indium oxide (In2O3) microspheres were synthesized using a hydrothermal method combined with self-reduction. The introduction of Mg doping resulted in a transformation of CO2 reduction products from a mixture (CO and CH4) to a single CH4 product. Furthermore, the subsequent modification with Au nanoparticles (4Au/2Mg–In2O3, 24.5 μmol g−1 h−1) led to a remarkable 12-fold increase in CH4 production compared with pure In2O3 (2.1 μmol g−1 h−1). This enhancement can be attributed to the lowered conduction band position of In2O3 caused by Mg doping, which directs the photogenerated electrons towards the reduction of CO2 to CH4. The presence of Au nanoparticles further facilitates the effective activation of CO2. Moreover, the specific adsorption of CO2 by Mg also contributes to the CO2 reduction reaction. The bimetallic functional site modification strategy employed in this study provides a meaningful approach to enhance the performance of photocatalysts for CO2 reduction.

Abstract Image

金沉积和镁掺杂协同调节 In2O3 光催化剂,促进二氧化碳还原和甲烷独占生成
光催化将二氧化碳(CO2)还原成甲烷(CH4)在能源转换领域具有重要意义。本研究采用水热法结合自还原法合成了镁-金(Mg-Au)双金属改性氧化铟(In2O3)微球。掺入镁后,二氧化碳还原产物从混合物(CO 和 CH4)转变为单一的 CH4 产物。此外,随后用金纳米颗粒(4Au/2Mg In2O3,24.5 μmol/g/h)进行改性,与纯 In2O3(2.1 μmol/g/h)相比,CH4 产量显著增加了 12 倍。这种提高可归因于掺入镁导致 In2O3 的导带位置降低,从而引导光生电子将 CO2 还原成 CH4。金纳米粒子的存在进一步促进了 CO2 的有效活化。此外,镁对 CO2 的特定吸附也有助于 CO2 还原反应。本研究采用的双金属功能位点修饰策略为提高光催化剂还原二氧化碳的性能提供了一种有意义的方法。虽然挑战依然存在,但这项研究对于充分释放光催化二氧化碳还原的潜力,创造一个更清洁、更可持续的世界具有重要的参考价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Inorganic Chemistry Frontiers
Inorganic Chemistry Frontiers CHEMISTRY, INORGANIC & NUCLEAR-
CiteScore
10.40
自引率
7.10%
发文量
587
审稿时长
1.2 months
期刊介绍: The international, high quality journal for interdisciplinary research between inorganic chemistry and related subjects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信