Jinghua Wang , Ying Sun , Rongyi Chen , Dan Meng , Yuanyuan Wei , Lindi Jiang , Xiufang Kong
{"title":"Pro-fibrotic effect of the susceptible gene PCSK5 in vascular fibrosis of Takayasu arteritis via TGF-β and SMAD3 signaling pathway activation","authors":"Jinghua Wang , Ying Sun , Rongyi Chen , Dan Meng , Yuanyuan Wei , Lindi Jiang , Xiufang Kong","doi":"10.1016/j.jaut.2024.103277","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Vascular fibrosis directly causes vascular thickening in Takayasu arteritis (TAK), in which sustained transforming growth factor beta (TGF-β) activation is critical. Understanding TGF-β activation regulation and blocking it might yield a therapeutic effect in TAK. Proprotein convertase subtilisin/kexin type 5 (PCSK5) rs6560480 (T/C) is associated with TAK development. In this study, we assessed the association between the <em>PCSK5</em> rs6560480 genotype and PCSK5 expression in TAK and explored its molecular role in TGF-β activation and vascular fibrosis development.</p></div><div><h3>Methods</h3><p>In TAK patients, PCSK5 and TGF-β expression in plasma and aortic tissue was examined by ELISA and immunohistochemical staining, and <em>PCSK5</em> rs6560480 was genotyped. The correlation between PCSK5 and extracellular matrix (ECM) expression was examined by Western blotting (WB) and immunohistochemistry staining. Detection by co-immunoprecipitation was performed to detect the interaction between PCSK5 and TGF-β in adventitial fibroblasts (AAFs). Downstream signaling pathways were detected by WB and validated with appropriate inhibitors. Potential immunosuppressive agents to inhibit the effects of PCSK5 were explored in cell culture and TAK patients.</p></div><div><h3>Results</h3><p>Patients with <em>PCSK5</em> rs6560480 TT patients had significantly higher PCSK5 levels and more thickened vascular lesions than patients with <em>PCSK5</em> rs6560480 CT. PCSK5 expression was significantly increased in alpha smooth muscle actin (α-SMA)-positive myofibroblasts in TAK vascular lesions. Overexpressing PCSK5 facilitated TGF-β and downstream SMAD2/3 activation and ECM expression in AAFs and aorta in in-vitro culture. The mechanistic study supported that PCSK5 activated precursor TGF-β (pro-TGF-β) to the mature form by binding the pro-TGF-β cleavage site. Leflunomide inhibited PCSK5 and pro-TGF-β binding, decreasing TGF-β activation and ECM expression, which was also partially validated in leflunomide-treated patients.</p></div><div><h3>Conclusion</h3><p>The findings revealed a novel pro-fibrotic mechanism of PCSK5 in TAK vascular fibrosis via TGF-β and downstream SMAD2/3 pathway activation. Leflunomide might be anti-fibrotic by disrupting PCSK5 and pro-TGF-β binding, presenting a new TAK treatment approach.</p></div>","PeriodicalId":15245,"journal":{"name":"Journal of autoimmunity","volume":"148 ","pages":"Article 103277"},"PeriodicalIF":7.9000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of autoimmunity","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0896841124001112","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Vascular fibrosis directly causes vascular thickening in Takayasu arteritis (TAK), in which sustained transforming growth factor beta (TGF-β) activation is critical. Understanding TGF-β activation regulation and blocking it might yield a therapeutic effect in TAK. Proprotein convertase subtilisin/kexin type 5 (PCSK5) rs6560480 (T/C) is associated with TAK development. In this study, we assessed the association between the PCSK5 rs6560480 genotype and PCSK5 expression in TAK and explored its molecular role in TGF-β activation and vascular fibrosis development.
Methods
In TAK patients, PCSK5 and TGF-β expression in plasma and aortic tissue was examined by ELISA and immunohistochemical staining, and PCSK5 rs6560480 was genotyped. The correlation between PCSK5 and extracellular matrix (ECM) expression was examined by Western blotting (WB) and immunohistochemistry staining. Detection by co-immunoprecipitation was performed to detect the interaction between PCSK5 and TGF-β in adventitial fibroblasts (AAFs). Downstream signaling pathways were detected by WB and validated with appropriate inhibitors. Potential immunosuppressive agents to inhibit the effects of PCSK5 were explored in cell culture and TAK patients.
Results
Patients with PCSK5 rs6560480 TT patients had significantly higher PCSK5 levels and more thickened vascular lesions than patients with PCSK5 rs6560480 CT. PCSK5 expression was significantly increased in alpha smooth muscle actin (α-SMA)-positive myofibroblasts in TAK vascular lesions. Overexpressing PCSK5 facilitated TGF-β and downstream SMAD2/3 activation and ECM expression in AAFs and aorta in in-vitro culture. The mechanistic study supported that PCSK5 activated precursor TGF-β (pro-TGF-β) to the mature form by binding the pro-TGF-β cleavage site. Leflunomide inhibited PCSK5 and pro-TGF-β binding, decreasing TGF-β activation and ECM expression, which was also partially validated in leflunomide-treated patients.
Conclusion
The findings revealed a novel pro-fibrotic mechanism of PCSK5 in TAK vascular fibrosis via TGF-β and downstream SMAD2/3 pathway activation. Leflunomide might be anti-fibrotic by disrupting PCSK5 and pro-TGF-β binding, presenting a new TAK treatment approach.
期刊介绍:
The Journal of Autoimmunity serves as the primary publication for research on various facets of autoimmunity. These include topics such as the mechanism of self-recognition, regulation of autoimmune responses, experimental autoimmune diseases, diagnostic tests for autoantibodies, as well as the epidemiology, pathophysiology, and treatment of autoimmune diseases. While the journal covers a wide range of subjects, it emphasizes papers exploring the genetic, molecular biology, and cellular aspects of the field.
The Journal of Translational Autoimmunity, on the other hand, is a subsidiary journal of the Journal of Autoimmunity. It focuses specifically on translating scientific discoveries in autoimmunity into clinical applications and practical solutions. By highlighting research that bridges the gap between basic science and clinical practice, the Journal of Translational Autoimmunity aims to advance the understanding and treatment of autoimmune diseases.