Sarah L Bugby, Andrew L Farnworth, William R Brooks, Alan C Perkins
{"title":"Seracam: characterisation of a new small field of view hybrid gamma camera for nuclear medicine.","authors":"Sarah L Bugby, Andrew L Farnworth, William R Brooks, Alan C Perkins","doi":"10.1186/s40658-024-00659-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Portable gamma cameras are being developed for nuclear medicine procedures such as thyroid scintigraphy. This article introduces Seracam® - a new technology that combines small field of view gamma imaging with optical imaging - and reports its performance and suitability for small organ imaging.</p><p><strong>Methods: </strong>The count rate capability, uniformity, spatial resolution, and sensitivity for <sup>99m</sup>Tc are reported for four integrated pinhole collimators of nominal sizes of 1 mm, 2 mm, 3 mm and 5 mm. Characterisation methodology is based on NEMA guidelines, with some adjustments necessitated by camera design. Two diagnostic scenarios - thyroid scintigraphy and gastric emptying - are simulated using clinically relevant activities and geometries to investigate application-specific performance. A qualitative assessment of the potential benefits and disadvantages of Seracam is also provided.</p><p><strong>Results: </strong>Seracam's performance across the measured characteristics is appropriate for small field of view applications in nuclear medicine. At an imaging distance of 50 mm, corresponding to a field of view of 77.6 mm × 77.6 mm, spatial resolution ranged from 4.6 mm to 26 mm and sensitivity from 3.6 cps/MBq to 52.2 cps/MBq, depending on the collimator chosen. Results from the clinical simulations were particularly promising despite the challenging scenarios investigated. The optimal collimator choice was strongly application dependent, with gastric emptying relying on the higher sensitivity of the 5 mm pinhole whereas thyroid imaging benefitted from the enhanced spatial resolution of the 1 mm pinhole. Signal to noise ratio in images was improved by pixel binning. Seracam has lower measured sensitivity when compared to a traditional large field of view gamma camera, for the simulated applications this is balanced by advantages such as high spatial resolution, portability, ease of use and real time gamma-optical image fusion and display.</p><p><strong>Conclusion: </strong>The results show that Seracam has appropriate performance for small organ <sup>99m</sup>Tc imaging. The results also show that the performance of small field of view systems must be considered holistically and in clinically appropriate scenarios.</p>","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"11 1","pages":"57"},"PeriodicalIF":3.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11231112/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EJNMMI Physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40658-024-00659-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Portable gamma cameras are being developed for nuclear medicine procedures such as thyroid scintigraphy. This article introduces Seracam® - a new technology that combines small field of view gamma imaging with optical imaging - and reports its performance and suitability for small organ imaging.
Methods: The count rate capability, uniformity, spatial resolution, and sensitivity for 99mTc are reported for four integrated pinhole collimators of nominal sizes of 1 mm, 2 mm, 3 mm and 5 mm. Characterisation methodology is based on NEMA guidelines, with some adjustments necessitated by camera design. Two diagnostic scenarios - thyroid scintigraphy and gastric emptying - are simulated using clinically relevant activities and geometries to investigate application-specific performance. A qualitative assessment of the potential benefits and disadvantages of Seracam is also provided.
Results: Seracam's performance across the measured characteristics is appropriate for small field of view applications in nuclear medicine. At an imaging distance of 50 mm, corresponding to a field of view of 77.6 mm × 77.6 mm, spatial resolution ranged from 4.6 mm to 26 mm and sensitivity from 3.6 cps/MBq to 52.2 cps/MBq, depending on the collimator chosen. Results from the clinical simulations were particularly promising despite the challenging scenarios investigated. The optimal collimator choice was strongly application dependent, with gastric emptying relying on the higher sensitivity of the 5 mm pinhole whereas thyroid imaging benefitted from the enhanced spatial resolution of the 1 mm pinhole. Signal to noise ratio in images was improved by pixel binning. Seracam has lower measured sensitivity when compared to a traditional large field of view gamma camera, for the simulated applications this is balanced by advantages such as high spatial resolution, portability, ease of use and real time gamma-optical image fusion and display.
Conclusion: The results show that Seracam has appropriate performance for small organ 99mTc imaging. The results also show that the performance of small field of view systems must be considered holistically and in clinically appropriate scenarios.
期刊介绍:
EJNMMI Physics is an international platform for scientists, users and adopters of nuclear medicine with a particular interest in physics matters. As a companion journal to the European Journal of Nuclear Medicine and Molecular Imaging, this journal has a multi-disciplinary approach and welcomes original materials and studies with a focus on applied physics and mathematics as well as imaging systems engineering and prototyping in nuclear medicine. This includes physics-driven approaches or algorithms supported by physics that foster early clinical adoption of nuclear medicine imaging and therapy.