Zhu Deng, Philippe Ciais, Liting Hu, Adrien Martinez, Marielle Saunois, Rona L. Thompson, Kushal Tibrewal, Wouter Peters, Brendan Byrne, Giacomo Grassi, Paul I. Palmer, Ingrid T. Luijkx, Zhu Liu, Junjie Liu, Xuekun Fang, Tengjiao Wang, Hanqin Tian, Katsumasa Tanaka, Ana Bastos, Stephen Sitch, Benjamin Poulter, Clément Albergel, Aki Tsuruta, Shamil Maksyutov, Rajesh Janardanan, Yosuke Niwa, Bo Zheng, Joël Thanwerdas, Dmitry Belikov, Arjo Segers, Frédéric Chevallier
{"title":"Global Greenhouse Gas Reconciliation 2022","authors":"Zhu Deng, Philippe Ciais, Liting Hu, Adrien Martinez, Marielle Saunois, Rona L. Thompson, Kushal Tibrewal, Wouter Peters, Brendan Byrne, Giacomo Grassi, Paul I. Palmer, Ingrid T. Luijkx, Zhu Liu, Junjie Liu, Xuekun Fang, Tengjiao Wang, Hanqin Tian, Katsumasa Tanaka, Ana Bastos, Stephen Sitch, Benjamin Poulter, Clément Albergel, Aki Tsuruta, Shamil Maksyutov, Rajesh Janardanan, Yosuke Niwa, Bo Zheng, Joël Thanwerdas, Dmitry Belikov, Arjo Segers, Frédéric Chevallier","doi":"10.5194/essd-2024-103","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> In this study, we provide an update of the methodology and data used by Deng et al. (2022) to compare the national greenhouse gas inventories (NGHGIs) and atmospheric inversion model ensembles contributed by international research teams coordinated by the Global Carbon Project. The comparison framework uses transparent processing of the net ecosystem exchange fluxes of carbon dioxide (CO<sub>2</sub>) from inversions to provide estimates of terrestrial carbon stock changes over managed land that can be used to evaluate NGHGIs. For methane (CH<sub>4</sub>), and nitrous oxide (N<sub>2</sub>O), we separate anthropogenic emissions from natural sources based directly on the inversion results, to make them compatible with NGHGIs. Our global harmonized NGHGIs database was updated with inventory data until February 2023 by compiling data from periodical UNFCCC inventories by Annex I countries and sporadic and less detailed emissions reports by non-Annex I countries given by National Communications and Biennial Update Reports. For the inversion data, we used an ensemble of 22 global inversions produced for the most recent assessments of the global budgets of CO<sub>2</sub>, CH<sub>4</sub> and N<sub>2</sub>O coordinated by the Global Carbon Project with ancillary data. The CO<sub>2</sub> inversion ensemble in this study goes through 2021, building on our previous report from 1990 to 2019, and includes three new satellite inversions compared to the previous study, and an improved managed land mask. As a result, although significant differences exist between the CO<sub>2</sub> inversion estimates, both satellite and in-situ inversions over managed lands indicate that Russia and Canada had a larger land carbon sink in recent years than reported in their NGHGIs, while the NGHGIs reported a significant upward trend of carbon sink in Russia but a downward trend in Canada. For CH<sub>4</sub> and N<sub>2</sub>O, the results of the new inversion ensembles are extended to 2020. Rapid increases in anthropogenic CH4 emissions were observed in developing countries, with varying levels of agreement between NGHGIs and inversion results, while developed countries showed a slow declining or stable trend in emissions. Much denser sampling and higher atmospheric CO<sub>2</sub> and CH<sub>4</sub> concentrations by different satellites, are expected in the coming years. The methodology proposed here to compare inversion results with NGHGIs can be applied regularly for monitoring the effectiveness of mitigation policy and progress by countries to meet the objective of their pledges. The dataset constructed for this study is publicly available at https://doi.org/10.5281/zenodo.10841716 (Deng et al., 2024).","PeriodicalId":48747,"journal":{"name":"Earth System Science Data","volume":"28 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth System Science Data","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/essd-2024-103","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. In this study, we provide an update of the methodology and data used by Deng et al. (2022) to compare the national greenhouse gas inventories (NGHGIs) and atmospheric inversion model ensembles contributed by international research teams coordinated by the Global Carbon Project. The comparison framework uses transparent processing of the net ecosystem exchange fluxes of carbon dioxide (CO2) from inversions to provide estimates of terrestrial carbon stock changes over managed land that can be used to evaluate NGHGIs. For methane (CH4), and nitrous oxide (N2O), we separate anthropogenic emissions from natural sources based directly on the inversion results, to make them compatible with NGHGIs. Our global harmonized NGHGIs database was updated with inventory data until February 2023 by compiling data from periodical UNFCCC inventories by Annex I countries and sporadic and less detailed emissions reports by non-Annex I countries given by National Communications and Biennial Update Reports. For the inversion data, we used an ensemble of 22 global inversions produced for the most recent assessments of the global budgets of CO2, CH4 and N2O coordinated by the Global Carbon Project with ancillary data. The CO2 inversion ensemble in this study goes through 2021, building on our previous report from 1990 to 2019, and includes three new satellite inversions compared to the previous study, and an improved managed land mask. As a result, although significant differences exist between the CO2 inversion estimates, both satellite and in-situ inversions over managed lands indicate that Russia and Canada had a larger land carbon sink in recent years than reported in their NGHGIs, while the NGHGIs reported a significant upward trend of carbon sink in Russia but a downward trend in Canada. For CH4 and N2O, the results of the new inversion ensembles are extended to 2020. Rapid increases in anthropogenic CH4 emissions were observed in developing countries, with varying levels of agreement between NGHGIs and inversion results, while developed countries showed a slow declining or stable trend in emissions. Much denser sampling and higher atmospheric CO2 and CH4 concentrations by different satellites, are expected in the coming years. The methodology proposed here to compare inversion results with NGHGIs can be applied regularly for monitoring the effectiveness of mitigation policy and progress by countries to meet the objective of their pledges. The dataset constructed for this study is publicly available at https://doi.org/10.5281/zenodo.10841716 (Deng et al., 2024).
Earth System Science DataGEOSCIENCES, MULTIDISCIPLINARYMETEOROLOGY-METEOROLOGY & ATMOSPHERIC SCIENCES
CiteScore
18.00
自引率
5.30%
发文量
231
审稿时长
35 weeks
期刊介绍:
Earth System Science Data (ESSD) is an international, interdisciplinary journal that publishes articles on original research data in order to promote the reuse of high-quality data in the field of Earth system sciences. The journal welcomes submissions of original data or data collections that meet the required quality standards and have the potential to contribute to the goals of the journal. It includes sections dedicated to regular-length articles, brief communications (such as updates to existing data sets), commentaries, review articles, and special issues. ESSD is abstracted and indexed in several databases, including Science Citation Index Expanded, Current Contents/PCE, Scopus, ADS, CLOCKSS, CNKI, DOAJ, EBSCO, Gale/Cengage, GoOA (CAS), and Google Scholar, among others.