Von Neumann Inequality and Dilation Theory on Regular $${{\mathcal {U}}}$$ -Twisted Polyballs

IF 1.1 3区 数学 Q1 MATHEMATICS
Gelu Popescu
{"title":"Von Neumann Inequality and Dilation Theory on Regular $${{\\mathcal {U}}}$$ -Twisted Polyballs","authors":"Gelu Popescu","doi":"10.1007/s00025-024-02218-z","DOIUrl":null,"url":null,"abstract":"<p>The goal of this paper is to develop a dilation theory on the regular <span>\\({{\\mathcal {U}}}\\)</span>-twisted polyball <span>\\(\\textbf{B}_{{\\mathcal {U}}}({{\\mathcal {H}}})\\)</span>, which is the set of all <i>k</i>-tuples <span>\\(T:=(T_1,\\ldots , T_k)\\)</span> of row contractions <span>\\(T_i:=[T_{i,1}\\cdots T_{i,n_i}]\\)</span> on a Hilbert space <span>\\({{\\mathcal {H}}}\\)</span> satisfying certain positivity condition on the defect operator <span>\\(\\Delta _T(I)\\)</span> and <span>\\({{\\mathcal {U}}}\\)</span>-commutation relations, where <span>\\({{\\mathcal {U}}}\\subset B({{\\mathcal {H}}})\\)</span> is an appropriate set of unitary operators. The role of operator model is played by a standard multi-shift <span>\\(\\textbf{S}:=(\\textbf{S}_1,\\ldots , \\textbf{S}_k)\\)</span> with <span>\\(\\textbf{S}_i:=[\\textbf{S}_{i,1}\\cdots \\textbf{S}_{i,n_i}]\\)</span>, which is a <i>k</i>-tuple of doubly <span>\\(I\\otimes {{\\mathcal {U}}}\\)</span>-commuting pure row isometries on the Hilbert space <span>\\(\\ell ^2({{\\mathbb {F}}}_{n_1}^+\\times \\cdots \\times {{\\mathbb {F}}}_{n_k}^+)\\otimes {{\\mathcal {H}}}\\)</span>, where <span>\\({{\\mathbb {F}}}_{n_i}^+\\)</span> is the unital free semigroup with <span>\\(n_i\\)</span> generators and each <span>\\(\\textbf{S}_{i,j}\\)</span> is a weighted shift with operator-valued weights. It is shown that many of the classical results concerning the dilation theory of contractions on Hilbert spaces have analogues for <span>\\({{\\mathcal {U}}}\\)</span>-twisted polyballs. This includes: Sz.-Nagy dilation theorem, von Neumann inequality, Itô and Brehmer dilations for commuting isometries and contractions, respectively, and Beurling characterization of the invariant subspaces for the unilateral shift on the Hardy space <span>\\(H^2\\)</span>.</p>","PeriodicalId":54490,"journal":{"name":"Results in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00025-024-02218-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The goal of this paper is to develop a dilation theory on the regular \({{\mathcal {U}}}\)-twisted polyball \(\textbf{B}_{{\mathcal {U}}}({{\mathcal {H}}})\), which is the set of all k-tuples \(T:=(T_1,\ldots , T_k)\) of row contractions \(T_i:=[T_{i,1}\cdots T_{i,n_i}]\) on a Hilbert space \({{\mathcal {H}}}\) satisfying certain positivity condition on the defect operator \(\Delta _T(I)\) and \({{\mathcal {U}}}\)-commutation relations, where \({{\mathcal {U}}}\subset B({{\mathcal {H}}})\) is an appropriate set of unitary operators. The role of operator model is played by a standard multi-shift \(\textbf{S}:=(\textbf{S}_1,\ldots , \textbf{S}_k)\) with \(\textbf{S}_i:=[\textbf{S}_{i,1}\cdots \textbf{S}_{i,n_i}]\), which is a k-tuple of doubly \(I\otimes {{\mathcal {U}}}\)-commuting pure row isometries on the Hilbert space \(\ell ^2({{\mathbb {F}}}_{n_1}^+\times \cdots \times {{\mathbb {F}}}_{n_k}^+)\otimes {{\mathcal {H}}}\), where \({{\mathbb {F}}}_{n_i}^+\) is the unital free semigroup with \(n_i\) generators and each \(\textbf{S}_{i,j}\) is a weighted shift with operator-valued weights. It is shown that many of the classical results concerning the dilation theory of contractions on Hilbert spaces have analogues for \({{\mathcal {U}}}\)-twisted polyballs. This includes: Sz.-Nagy dilation theorem, von Neumann inequality, Itô and Brehmer dilations for commuting isometries and contractions, respectively, and Beurling characterization of the invariant subspaces for the unilateral shift on the Hardy space \(H^2\).

正规 $${{\mathcal {U}}}$ 扭转多球上的冯-诺依曼不等式和膨胀理论
本文的目标是发展关于正则({{\mathcal {U}}})-扭曲多球(textbf{B}_{{\mathcal {U}}}({{\mathcal {H}}})的扩张理论,它是所有 k-tuples \(T:=(T_1,\ldots,T_k)\)行收缩的集合(T_i:=[T_{i,1}\cdots T_{i,n_i}]()在希尔伯特空间 \({{\mathcal {H}}}\) 上满足缺陷算子 \(\Delta _T(I)\) 和 \({{\mathcal {U}}}\) - 换向关系上的某些实在性条件、其中 \({{\mathcal {U}}}(B({\mathcal {H}}}子集)是一个合适的单元算子集。算子模型的角色由标准多移位 \(\textbf{S}:=(\textbf{S}_1,\ldots , \textbf{S}_k)\)扮演,其中 \(\textbf{S}_i:=[\textbf{S}_{i,1}\cdots \textbf{S}_{i,n_i}]\),这是一个在希尔伯特空间上的 k 对偶纯行等距(ell ^2({\mathbb {F}}_{n_1}^+times \cdots \times {\mathbb {F}}}_{n_k}^+)\otimes {{\mathcal {H}})、其中,\({{mathbb {F}}}_{n_i}^+\) 是具有 \(n_i\) 个产生子的空位自由半群,每个 \(\textbf{S}_{i,j}\) 是具有算子值权重的加权移位。研究表明,关于希尔伯特空间上收缩的扩张理论的许多经典结果在 \({{math\cal {U}}}\)-twisted polyballs 上都有类似的结果。这包括Sz.-Nagy扩张定理、von Neumann不等式、交换等距和收缩的Itô和Brehmer扩张,以及Hardy空间\(H^2\)上单边移动的不变子空间的Beurling表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Mathematics
Results in Mathematics 数学-数学
CiteScore
1.90
自引率
4.50%
发文量
198
审稿时长
6-12 weeks
期刊介绍: Results in Mathematics (RM) publishes mainly research papers in all fields of pure and applied mathematics. In addition, it publishes summaries of any mathematical field and surveys of any mathematical subject provided they are designed to advance some recent mathematical development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信