Parametrised Presentability Over Orbital Categories

IF 0.6 4区 数学 Q3 MATHEMATICS
Kaif Hilman
{"title":"Parametrised Presentability Over Orbital Categories","authors":"Kaif Hilman","doi":"10.1007/s10485-024-09772-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we develop the notion of presentability in the parametrised homotopy theory framework of Barwick et al. (Parametrized higher category theory and higher algebra: a general introduction, 2016) over orbital categories. We formulate and prove a characterisation of parametrised presentable categories in terms of its associated straightening. From this we deduce a parametrised adjoint functor theorem from the unparametrised version, prove various localisation results, and we record the interactions of the notion of presentability here with multiplicative matters. Such a theory is of interest for example in equivariant homotopy theory, and we will apply it in Hilman (Parametrised noncommutative motives and cubical descent in equivariant algebraic K-theory, 2022) to construct the category of parametrised noncommutative motives for equivariant algebraic K-theory.</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":"32 3","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10485-024-09772-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Categorical Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10485-024-09772-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we develop the notion of presentability in the parametrised homotopy theory framework of Barwick et al. (Parametrized higher category theory and higher algebra: a general introduction, 2016) over orbital categories. We formulate and prove a characterisation of parametrised presentable categories in terms of its associated straightening. From this we deduce a parametrised adjoint functor theorem from the unparametrised version, prove various localisation results, and we record the interactions of the notion of presentability here with multiplicative matters. Such a theory is of interest for example in equivariant homotopy theory, and we will apply it in Hilman (Parametrised noncommutative motives and cubical descent in equivariant algebraic K-theory, 2022) to construct the category of parametrised noncommutative motives for equivariant algebraic K-theory.

Abstract Image

轨道类别上的参数化呈现性
在本文中,我们在 Barwick 等人(《参数化高范畴理论与高等代数:一般介绍》,2016 年)的参数化同调理论框架中发展了轨道范畴的可呈现性概念。我们提出并证明了参数化可现性范畴在其相关拉直方面的特征。由此,我们从非参数化版本推导出参数化的邻接函数定理,证明了各种局部化结果,并记录了这里的可现性概念与乘法事项的相互作用。这样的理论在等变同调理论中也很有意义,我们将在希尔曼(《等变代数 K 理论中的参数化非交换动因和立方下降》,2022 年)中应用它来构建等变代数 K 理论的参数化非交换动因范畴。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
16.70%
发文量
29
审稿时长
>12 weeks
期刊介绍: Applied Categorical Structures focuses on applications of results, techniques and ideas from category theory to mathematics, physics and computer science. These include the study of topological and algebraic categories, representation theory, algebraic geometry, homological and homotopical algebra, derived and triangulated categories, categorification of (geometric) invariants, categorical investigations in mathematical physics, higher category theory and applications, categorical investigations in functional analysis, in continuous order theory and in theoretical computer science. In addition, the journal also follows the development of emerging fields in which the application of categorical methods proves to be relevant. Applied Categorical Structures publishes both carefully refereed research papers and survey papers. It promotes communication and increases the dissemination of new results and ideas among mathematicians and computer scientists who use categorical methods in their research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信