{"title":"Enhanced deflection method for large-curvature problems: Formulation, verification and application to fiber-reinforced polymer-enabled arches","authors":"ZY Xia, T Jiang, T Yu","doi":"10.1177/13694332241263871","DOIUrl":null,"url":null,"abstract":"Motivated by a curiosity to explore the behavior of innovative arch structures enabled by the use of fiber-reinforced polymer (FRP) composites, this paper proposes a theoretical model built upon an enhanced formulation of the deflection method, broadening its scope to large-curvature problems. Traditionally, the deflection method approximates curvature as the second-order derivative of deflection, a simplification valid only for small curvatures. This limitation poses a challenge when applying the deflection method to problems involving large curvatures, a characteristic inherent in FRP-enabled arches where significant curvatures arise either initially or due to deformation. The enhanced formulation at the core of the proposed model addresses this challenge by incorporating a circular deflection function. This function posits that each deformed segment of the structural member can be represented by a circular arc, with its curvature and length related to the internal axial force and bending moment at the midpoint section of the segment. This feature facilitates the exact representation of curvature, offering the proposed model a unified approach capable of addressing both small- and large-curvature problems. The paper details the formulation and verification of the theoretical model, with an emphasis on its application to representative cases of FRP-enabled arches.","PeriodicalId":50849,"journal":{"name":"Advances in Structural Engineering","volume":"52 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Structural Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/13694332241263871","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Motivated by a curiosity to explore the behavior of innovative arch structures enabled by the use of fiber-reinforced polymer (FRP) composites, this paper proposes a theoretical model built upon an enhanced formulation of the deflection method, broadening its scope to large-curvature problems. Traditionally, the deflection method approximates curvature as the second-order derivative of deflection, a simplification valid only for small curvatures. This limitation poses a challenge when applying the deflection method to problems involving large curvatures, a characteristic inherent in FRP-enabled arches where significant curvatures arise either initially or due to deformation. The enhanced formulation at the core of the proposed model addresses this challenge by incorporating a circular deflection function. This function posits that each deformed segment of the structural member can be represented by a circular arc, with its curvature and length related to the internal axial force and bending moment at the midpoint section of the segment. This feature facilitates the exact representation of curvature, offering the proposed model a unified approach capable of addressing both small- and large-curvature problems. The paper details the formulation and verification of the theoretical model, with an emphasis on its application to representative cases of FRP-enabled arches.
期刊介绍:
Advances in Structural Engineering was established in 1997 and has become one of the major peer-reviewed journals in the field of structural engineering. To better fulfil the mission of the journal, we have recently decided to launch two new features for the journal: (a) invited review papers providing an in-depth exposition of a topic of significant current interest; (b) short papers reporting truly new technologies in structural engineering.