Multiplicity results for elliptic problems with critical exponential growth

Kanishka Perera
{"title":"Multiplicity results for elliptic problems with critical exponential growth","authors":"Kanishka Perera","doi":"10.1007/s00030-024-00973-0","DOIUrl":null,"url":null,"abstract":"<p>We prove new multiplicity results for some elliptic problems with critical exponential growth. More specifically, we show that the problems considered here have arbitrarily many solutions for all sufficiently large values of a certain parameter <span>\\(\\mu &gt; 0\\)</span>. In particular, the number of solutions goes to infinity as <span>\\(\\mu \\rightarrow \\infty \\)</span>. The proof is based on an abstract critical point theorem.</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-024-00973-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We prove new multiplicity results for some elliptic problems with critical exponential growth. More specifically, we show that the problems considered here have arbitrarily many solutions for all sufficiently large values of a certain parameter \(\mu > 0\). In particular, the number of solutions goes to infinity as \(\mu \rightarrow \infty \). The proof is based on an abstract critical point theorem.

具有临界指数增长的椭圆问题的多重性结果
我们为一些具有临界指数增长的椭圆问题证明了新的多重性结果。更具体地说,我们证明了这里所考虑的问题对于某个参数的所有足够大的值都有任意多的解。特别是,解的数量会随着 \(\mu \rightarrow \infty \)的变化而达到无穷大。证明基于一个抽象临界点定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信