{"title":"Characteristics and Evaluation of Al/Al2O3/SiC/Mg Nano-Powder on Perforated SS316L Composite Bimetallic Sheet","authors":"Ayush Trivedi, Vijay Kumar Dwivedi, Mayank Agarwal","doi":"10.1007/s12666-024-03391-z","DOIUrl":null,"url":null,"abstract":"<p>The enhancement of nuclear and high-temperature applications largely depends on the cladding procedure for the composition of bimetallic sheets made of stainless steel. The current study presents a modified version of a unique experimental set-up for a perforated substrate sheet with ball-milled, nano-scale clad powder reinforcement. To create the clad material, Al<sub>2</sub>O<sub>3</sub>, SiC nano-sized grain powders and Mg coarse grain powder were combined with fine Al powder particles using a ball milling technique. In parallel, SS316L substrate sheets were utilised to fabricate bimetallic composite sheets and were perforated at regular intervals for a specific area. In an inert gas environment, a conventional heating process with mild initial compaction was offered for the sintering process to progress upon. The influence of the processing on the interfaces is suggested by the microstructure, energy-dispersive X-ray (EDX) and micro-hardness results from different sites in the synthesised bimetallic composite sheet. The processing methods and how they affect the diffusion behaviour of the clad intersection and perforation zone are described in depth in this experimental study.</p>","PeriodicalId":23224,"journal":{"name":"Transactions of The Indian Institute of Metals","volume":"38 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of The Indian Institute of Metals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12666-024-03391-z","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
The enhancement of nuclear and high-temperature applications largely depends on the cladding procedure for the composition of bimetallic sheets made of stainless steel. The current study presents a modified version of a unique experimental set-up for a perforated substrate sheet with ball-milled, nano-scale clad powder reinforcement. To create the clad material, Al2O3, SiC nano-sized grain powders and Mg coarse grain powder were combined with fine Al powder particles using a ball milling technique. In parallel, SS316L substrate sheets were utilised to fabricate bimetallic composite sheets and were perforated at regular intervals for a specific area. In an inert gas environment, a conventional heating process with mild initial compaction was offered for the sintering process to progress upon. The influence of the processing on the interfaces is suggested by the microstructure, energy-dispersive X-ray (EDX) and micro-hardness results from different sites in the synthesised bimetallic composite sheet. The processing methods and how they affect the diffusion behaviour of the clad intersection and perforation zone are described in depth in this experimental study.
期刊介绍:
Transactions of the Indian Institute of Metals publishes original research articles and reviews on ferrous and non-ferrous process metallurgy, structural and functional materials development, physical, chemical and mechanical metallurgy, welding science and technology, metal forming, particulate technologies, surface engineering, characterization of materials, thermodynamics and kinetics, materials modelling and other allied branches of Metallurgy and Materials Engineering.
Transactions of the Indian Institute of Metals also serves as a forum for rapid publication of recent advances in all the branches of Metallurgy and Materials Engineering. The technical content of the journal is scrutinized by the Editorial Board composed of experts from various disciplines of Metallurgy and Materials Engineering. Editorial Advisory Board provides valuable advice on technical matters related to the publication of Transactions.