On Vertices of Frontals in the Euclidean Plane

Nozomi Nakatsuyama, Masatomo Takahashi
{"title":"On Vertices of Frontals in the Euclidean Plane","authors":"Nozomi Nakatsuyama, Masatomo Takahashi","doi":"10.1007/s00574-024-00410-x","DOIUrl":null,"url":null,"abstract":"<p>We investigate vertices for plane curves with singular points. As plane curves with singular points, we consider Legendre curves (respectively, Legendre immersions) in the unit tangent bundle over the Euclidean plane and frontals (respectively, fronts) in the Euclidean plane. We define a vertex using evolutes of frontals. After that we define a vertex of a frontal in the general case. It is also known that the four vertex theorem does not hold for simple closed fronts. We give conditions under which a frontal has a vertex and the four vertex theorem holds for closed frontals. We also give examples and counter examples of the four vertex theorem.</p>","PeriodicalId":501417,"journal":{"name":"Bulletin of the Brazilian Mathematical Society, New Series","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Brazilian Mathematical Society, New Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00574-024-00410-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate vertices for plane curves with singular points. As plane curves with singular points, we consider Legendre curves (respectively, Legendre immersions) in the unit tangent bundle over the Euclidean plane and frontals (respectively, fronts) in the Euclidean plane. We define a vertex using evolutes of frontals. After that we define a vertex of a frontal in the general case. It is also known that the four vertex theorem does not hold for simple closed fronts. We give conditions under which a frontal has a vertex and the four vertex theorem holds for closed frontals. We also give examples and counter examples of the four vertex theorem.

Abstract Image

论欧几里得平面中的正面顶点
我们研究具有奇异点的平面曲线的顶点。作为有奇异点的平面曲线,我们考虑了欧几里得平面上单位切线束中的 Legendre 曲线(分别为 Legendre 沉浸)和欧几里得平面上的 frontals(分别为 frontts)。我们用正面的演化来定义顶点。然后,我们定义一般情况下的锋顶点。我们还知道,四顶点定理对于简单的封闭前沿并不成立。我们给出了正面有顶点和四顶点定理对封闭正面成立的条件。我们还给出了四顶点定理的实例和反例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信