Quality evaluation methods of handwritten Chinese characters: a comprehensive survey

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Weiran Chen, Jiaqi Su, Weitao Song, Jialiang Xu, Guiqian Zhu, Ying Li, Yi Ji, Chunping Liu
{"title":"Quality evaluation methods of handwritten Chinese characters: a comprehensive survey","authors":"Weiran Chen, Jiaqi Su, Weitao Song, Jialiang Xu, Guiqian Zhu, Ying Li, Yi Ji, Chunping Liu","doi":"10.1007/s00530-024-01396-8","DOIUrl":null,"url":null,"abstract":"<p>Quality evaluation of handwritten Chinese characters aims to automatically quantify and assess handwritten Chinese characters through computer vision and machine learning technology. It is a topic of great concern for many handwriting learners and calligraphy enthusiasts. Over the past years, with the continuous development of computer technology, various new techniques have achieved flourishing and thriving progress. Nevertheless, how to realize fast and accurate character evaluation without human intervention is still one of the most challenging tasks in artificial intelligence. In this paper, we aim to provide a comprehensive survey of the existing handwritten Chinese character quality evaluation methods. Specifically, we first illustrate the research scope and background of the task. Then we outline our literature selection and analysis methodology, and review a series of related concepts, including common Chinese character features, evaluation metrics and classical machine learning models. After that, relying on the adopted mechanism and algorithm, we categorize the evaluation methods into two major groups: traditional methods and machine-learning-based methods. Representative approaches in each group are summarized, and their strengths and limitations are discussed in detail. Based on 191 papers in this survey, we finally conclude our paper with the challenges and future directions, with the expectation to provide some valuable illuminations for researchers in this field.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00530-024-01396-8","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Quality evaluation of handwritten Chinese characters aims to automatically quantify and assess handwritten Chinese characters through computer vision and machine learning technology. It is a topic of great concern for many handwriting learners and calligraphy enthusiasts. Over the past years, with the continuous development of computer technology, various new techniques have achieved flourishing and thriving progress. Nevertheless, how to realize fast and accurate character evaluation without human intervention is still one of the most challenging tasks in artificial intelligence. In this paper, we aim to provide a comprehensive survey of the existing handwritten Chinese character quality evaluation methods. Specifically, we first illustrate the research scope and background of the task. Then we outline our literature selection and analysis methodology, and review a series of related concepts, including common Chinese character features, evaluation metrics and classical machine learning models. After that, relying on the adopted mechanism and algorithm, we categorize the evaluation methods into two major groups: traditional methods and machine-learning-based methods. Representative approaches in each group are summarized, and their strengths and limitations are discussed in detail. Based on 191 papers in this survey, we finally conclude our paper with the challenges and future directions, with the expectation to provide some valuable illuminations for researchers in this field.

Abstract Image

手写汉字质量评价方法:综合调查
手写汉字质量评估旨在通过计算机视觉和机器学习技术自动量化和评估手写汉字。这是许多手写学习者和书法爱好者非常关注的话题。多年来,随着计算机技术的不断发展,各种新技术层出不穷、蓬勃发展。然而,如何在没有人工干预的情况下实现快速、准确的字符评估,仍然是人工智能领域最具挑战性的任务之一。本文旨在全面考察现有的手写汉字质量评价方法。具体来说,我们首先说明了这项任务的研究范围和背景。然后,我们概述了我们的文献选择和分析方法,并回顾了一系列相关概念,包括常见汉字特征、评价指标和经典机器学习模型。然后,根据所采用的机制和算法,我们将评价方法分为两大类:传统方法和基于机器学习的方法。我们总结了每一类中具有代表性的方法,并详细讨论了它们的优势和局限性。在 191 篇论文的基础上,我们最后总结了本文所面临的挑战和未来的发展方向,希望能为该领域的研究人员提供一些有价值的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信