{"title":"The Fan Theorem, its strong negation, and the determinacy of games","authors":"Wim Veldman","doi":"10.1007/s00153-024-00930-9","DOIUrl":null,"url":null,"abstract":"<p>In the context of a weak formal theory called Basic Intuitionistic Mathematics <span>\\(\\textsf{BIM}\\)</span>, we study Brouwer’s <i>Fan Theorem</i> and a strong negation of the Fan Theorem, <i>Kleene’s Alternative (to the Fan Theorem)</i>. We prove that the Fan Theorem is equivalent to <i>contrapositions</i> of a number of intuitionistically accepted axioms of countable choice and that Kleene’s Alternative is equivalent to <i>strong negations</i> of these statements. We discuss finite and infinite games and introduce a constructively useful notion of <i>determinacy</i>. We prove that the Fan Theorem is equivalent to the <i>Intuitionistic Determinacy Theorem</i>. This theorem says that every subset of Cantor space <span>\\(2^\\omega \\)</span> is, in our constructively meaningful sense, determinate. Kleene’s Alternative is equivalent to a strong negation of a special case of this theorem. We also consider a <i>uniform intermediate value theorem</i> and a <i>compactness theorem for classical propositional logic</i>. The Fan Theorem is equivalent to each of these theorems and Kleene’s Alternative is equivalent to strong negations of them. We end with a note on <i>‘stronger’</i> Fan Theorems. The paper is a sequel to Veldman (Arch Math Logic 53:621–693, 2014).</p>","PeriodicalId":8350,"journal":{"name":"Archive for Mathematical Logic","volume":"6 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Mathematical Logic","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00153-024-00930-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0
Abstract
In the context of a weak formal theory called Basic Intuitionistic Mathematics \(\textsf{BIM}\), we study Brouwer’s Fan Theorem and a strong negation of the Fan Theorem, Kleene’s Alternative (to the Fan Theorem). We prove that the Fan Theorem is equivalent to contrapositions of a number of intuitionistically accepted axioms of countable choice and that Kleene’s Alternative is equivalent to strong negations of these statements. We discuss finite and infinite games and introduce a constructively useful notion of determinacy. We prove that the Fan Theorem is equivalent to the Intuitionistic Determinacy Theorem. This theorem says that every subset of Cantor space \(2^\omega \) is, in our constructively meaningful sense, determinate. Kleene’s Alternative is equivalent to a strong negation of a special case of this theorem. We also consider a uniform intermediate value theorem and a compactness theorem for classical propositional logic. The Fan Theorem is equivalent to each of these theorems and Kleene’s Alternative is equivalent to strong negations of them. We end with a note on ‘stronger’ Fan Theorems. The paper is a sequel to Veldman (Arch Math Logic 53:621–693, 2014).
期刊介绍:
The journal publishes research papers and occasionally surveys or expositions on mathematical logic. Contributions are also welcomed from other related areas, such as theoretical computer science or philosophy, as long as the methods of mathematical logic play a significant role. The journal therefore addresses logicians and mathematicians, computer scientists, and philosophers who are interested in the applications of mathematical logic in their own field, as well as its interactions with other areas of research.