{"title":"A multi-strategy hybrid cuckoo search algorithm with specular reflection based on a population linear decreasing strategy","authors":"Chengtian Ouyang, Xin Liu, Donglin Zhu, Yangyang Zheng, Changjun Zhou, Chengye Zou","doi":"10.1007/s13042-024-02273-6","DOIUrl":null,"url":null,"abstract":"<p>The cuckoo search algorithm (CS), an algorithm inspired by the nest-parasitic breeding behavior of cuckoos, has proved its own effectiveness as a problem-solving approach in many fields since it was proposed. Nevertheless, the cuckoo search algorithm still suffers from an imbalance between exploration and exploitation as well as a tendency to fall into local optimization. In this paper, we propose a new hybrid cuckoo search algorithm (LHCS) based on linear decreasing of populations, and in order to optimize the local search of the algorithm and make the algorithm converge quickly, we mix the solution updating strategy of the Grey Yours sincerely, wolf optimizer (GWO) and use the linear decreasing rule to adjust the calling ratio of the strategy in order to balance the global exploration and the local exploitation; Second, the addition of a specular reflection learning strategy enhances the algorithm's ability to jump out of local optima; Finally, the convergence ability of the algorithm on different intervals and the adaptive ability of population diversity are improved using a population linear decreasing strategy. The experimental results on 29 benchmark functions from the CEC2017 test set show that the LHCS algorithm has significant superiority and stability over other algorithms when the quality of all solutions is considered together. In order to further verify the performance of the proposed algorithm in this paper, we applied the algorithm to engineering problems, functional tests, and Wilcoxon test results show that the comprehensive performance of the LHCS algorithm outperforms the other 14 state-of-the-art algorithms. In several engineering optimization problems, the practicality and effectiveness of the LHCS algorithm are verified, and the design cost can be greatly reduced by applying it to real engineering problems.</p>","PeriodicalId":51327,"journal":{"name":"International Journal of Machine Learning and Cybernetics","volume":"12 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Machine Learning and Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s13042-024-02273-6","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The cuckoo search algorithm (CS), an algorithm inspired by the nest-parasitic breeding behavior of cuckoos, has proved its own effectiveness as a problem-solving approach in many fields since it was proposed. Nevertheless, the cuckoo search algorithm still suffers from an imbalance between exploration and exploitation as well as a tendency to fall into local optimization. In this paper, we propose a new hybrid cuckoo search algorithm (LHCS) based on linear decreasing of populations, and in order to optimize the local search of the algorithm and make the algorithm converge quickly, we mix the solution updating strategy of the Grey Yours sincerely, wolf optimizer (GWO) and use the linear decreasing rule to adjust the calling ratio of the strategy in order to balance the global exploration and the local exploitation; Second, the addition of a specular reflection learning strategy enhances the algorithm's ability to jump out of local optima; Finally, the convergence ability of the algorithm on different intervals and the adaptive ability of population diversity are improved using a population linear decreasing strategy. The experimental results on 29 benchmark functions from the CEC2017 test set show that the LHCS algorithm has significant superiority and stability over other algorithms when the quality of all solutions is considered together. In order to further verify the performance of the proposed algorithm in this paper, we applied the algorithm to engineering problems, functional tests, and Wilcoxon test results show that the comprehensive performance of the LHCS algorithm outperforms the other 14 state-of-the-art algorithms. In several engineering optimization problems, the practicality and effectiveness of the LHCS algorithm are verified, and the design cost can be greatly reduced by applying it to real engineering problems.
期刊介绍:
Cybernetics is concerned with describing complex interactions and interrelationships between systems which are omnipresent in our daily life. Machine Learning discovers fundamental functional relationships between variables and ensembles of variables in systems. The merging of the disciplines of Machine Learning and Cybernetics is aimed at the discovery of various forms of interaction between systems through diverse mechanisms of learning from data.
The International Journal of Machine Learning and Cybernetics (IJMLC) focuses on the key research problems emerging at the junction of machine learning and cybernetics and serves as a broad forum for rapid dissemination of the latest advancements in the area. The emphasis of IJMLC is on the hybrid development of machine learning and cybernetics schemes inspired by different contributing disciplines such as engineering, mathematics, cognitive sciences, and applications. New ideas, design alternatives, implementations and case studies pertaining to all the aspects of machine learning and cybernetics fall within the scope of the IJMLC.
Key research areas to be covered by the journal include:
Machine Learning for modeling interactions between systems
Pattern Recognition technology to support discovery of system-environment interaction
Control of system-environment interactions
Biochemical interaction in biological and biologically-inspired systems
Learning for improvement of communication schemes between systems