A multi-strategy hybrid cuckoo search algorithm with specular reflection based on a population linear decreasing strategy

IF 3.1 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Chengtian Ouyang, Xin Liu, Donglin Zhu, Yangyang Zheng, Changjun Zhou, Chengye Zou
{"title":"A multi-strategy hybrid cuckoo search algorithm with specular reflection based on a population linear decreasing strategy","authors":"Chengtian Ouyang, Xin Liu, Donglin Zhu, Yangyang Zheng, Changjun Zhou, Chengye Zou","doi":"10.1007/s13042-024-02273-6","DOIUrl":null,"url":null,"abstract":"<p>The cuckoo search algorithm (CS), an algorithm inspired by the nest-parasitic breeding behavior of cuckoos, has proved its own effectiveness as a problem-solving approach in many fields since it was proposed. Nevertheless, the cuckoo search algorithm still suffers from an imbalance between exploration and exploitation as well as a tendency to fall into local optimization. In this paper, we propose a new hybrid cuckoo search algorithm (LHCS) based on linear decreasing of populations, and in order to optimize the local search of the algorithm and make the algorithm converge quickly, we mix the solution updating strategy of the Grey Yours sincerely, wolf optimizer (GWO) and use the linear decreasing rule to adjust the calling ratio of the strategy in order to balance the global exploration and the local exploitation; Second, the addition of a specular reflection learning strategy enhances the algorithm's ability to jump out of local optima; Finally, the convergence ability of the algorithm on different intervals and the adaptive ability of population diversity are improved using a population linear decreasing strategy. The experimental results on 29 benchmark functions from the CEC2017 test set show that the LHCS algorithm has significant superiority and stability over other algorithms when the quality of all solutions is considered together. In order to further verify the performance of the proposed algorithm in this paper, we applied the algorithm to engineering problems, functional tests, and Wilcoxon test results show that the comprehensive performance of the LHCS algorithm outperforms the other 14 state-of-the-art algorithms. In several engineering optimization problems, the practicality and effectiveness of the LHCS algorithm are verified, and the design cost can be greatly reduced by applying it to real engineering problems.</p>","PeriodicalId":51327,"journal":{"name":"International Journal of Machine Learning and Cybernetics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Machine Learning and Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s13042-024-02273-6","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The cuckoo search algorithm (CS), an algorithm inspired by the nest-parasitic breeding behavior of cuckoos, has proved its own effectiveness as a problem-solving approach in many fields since it was proposed. Nevertheless, the cuckoo search algorithm still suffers from an imbalance between exploration and exploitation as well as a tendency to fall into local optimization. In this paper, we propose a new hybrid cuckoo search algorithm (LHCS) based on linear decreasing of populations, and in order to optimize the local search of the algorithm and make the algorithm converge quickly, we mix the solution updating strategy of the Grey Yours sincerely, wolf optimizer (GWO) and use the linear decreasing rule to adjust the calling ratio of the strategy in order to balance the global exploration and the local exploitation; Second, the addition of a specular reflection learning strategy enhances the algorithm's ability to jump out of local optima; Finally, the convergence ability of the algorithm on different intervals and the adaptive ability of population diversity are improved using a population linear decreasing strategy. The experimental results on 29 benchmark functions from the CEC2017 test set show that the LHCS algorithm has significant superiority and stability over other algorithms when the quality of all solutions is considered together. In order to further verify the performance of the proposed algorithm in this paper, we applied the algorithm to engineering problems, functional tests, and Wilcoxon test results show that the comprehensive performance of the LHCS algorithm outperforms the other 14 state-of-the-art algorithms. In several engineering optimization problems, the practicality and effectiveness of the LHCS algorithm are verified, and the design cost can be greatly reduced by applying it to real engineering problems.

Abstract Image

基于群体线性递减策略的带有镜面反射的多策略混合布谷鸟搜索算法
布谷鸟搜索算法(CS)是一种受布谷鸟筑巢寄生繁殖行为启发而产生的算法,自提出以来,已在许多领域证明了其作为一种解决问题的方法的有效性。然而,布谷鸟搜索算法仍然存在探索与利用不平衡以及容易陷入局部优化的问题。本文提出了一种基于种群线性递减的新型混合布谷鸟搜索算法(LHCS),为了优化算法的局部搜索,使算法快速收敛,我们混合了灰狼优化器(GWO)的解更新策略,并利用线性递减规则调整策略的调用比例,以平衡全局探索和局部开发;其次,增加了镜面反射学习策略,增强了算法跳出局部最优的能力;最后,利用种群线性递减策略提高了算法在不同区间的收敛能力和种群多样性的适应能力。对 CEC2017 测试集中 29 个基准函数的实验结果表明,综合考虑所有解的质量,LHCS 算法比其他算法具有明显的优越性和稳定性。为了进一步验证本文所提算法的性能,我们将该算法应用于工程问题、功能测试,Wilcoxon 检验结果表明,LHCS 算法的综合性能优于其他 14 种最先进算法。在多个工程优化问题中,LHCS 算法的实用性和有效性得到了验证,将其应用于实际工程问题,可以大大降低设计成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Machine Learning and Cybernetics
International Journal of Machine Learning and Cybernetics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
7.90
自引率
10.70%
发文量
225
期刊介绍: Cybernetics is concerned with describing complex interactions and interrelationships between systems which are omnipresent in our daily life. Machine Learning discovers fundamental functional relationships between variables and ensembles of variables in systems. The merging of the disciplines of Machine Learning and Cybernetics is aimed at the discovery of various forms of interaction between systems through diverse mechanisms of learning from data. The International Journal of Machine Learning and Cybernetics (IJMLC) focuses on the key research problems emerging at the junction of machine learning and cybernetics and serves as a broad forum for rapid dissemination of the latest advancements in the area. The emphasis of IJMLC is on the hybrid development of machine learning and cybernetics schemes inspired by different contributing disciplines such as engineering, mathematics, cognitive sciences, and applications. New ideas, design alternatives, implementations and case studies pertaining to all the aspects of machine learning and cybernetics fall within the scope of the IJMLC. Key research areas to be covered by the journal include: Machine Learning for modeling interactions between systems Pattern Recognition technology to support discovery of system-environment interaction Control of system-environment interactions Biochemical interaction in biological and biologically-inspired systems Learning for improvement of communication schemes between systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信