Neutron-absorption gratings fabricated by ultrasound-assisted filling method based on gadolinium particles

IF 2.4 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Yaohu Lei, Xiqi Li, Chi Wei, Zhuozhao Li, Guiwen Xu, Xin Liu, Jianheng Huang, Shengxiang Wang and Ji Li
{"title":"Neutron-absorption gratings fabricated by ultrasound-assisted filling method based on gadolinium particles","authors":"Yaohu Lei, Xiqi Li, Chi Wei, Zhuozhao Li, Guiwen Xu, Xin Liu, Jianheng Huang, Shengxiang Wang and Ji Li","doi":"10.1088/1361-6439/ad5b69","DOIUrl":null,"url":null,"abstract":"Neutron differential phase-contrast imaging (DPCI) plays a pivotal role in analyzing magnetic domain structures and field gradients in materials, necessitating high-quality neutron absorption gratings for enhanced fringe contrast. Traditional fabrication techniques, typically filling gadolinium (Gd) or Gd-containing materials into the corresponding grating structures, face challenges in achieving optimal Gd filling ratios and thickness, limiting the neutron DPCI system’s performance. This paper introduces an approach utilizing ultrasound-assisted filling method to introduce Gd particles into grating trenches with dense deposition, achieving an absorption grating period of 42 μm. This method achieves an equivalent Gd thickness of 80.3 μm, corresponding to the filling ratio of 53.53%, as confirmed by scanning electron microscopy and x-ray micro-imaging. The utilization of an ultrasound not only improves the Gd filling ratio, but also suggests potential scalability for large-area grating production, marking a significant advancement in neutron DPCI technology by providing high-quality components.","PeriodicalId":16346,"journal":{"name":"Journal of Micromechanics and Microengineering","volume":"51 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micromechanics and Microengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6439/ad5b69","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Neutron differential phase-contrast imaging (DPCI) plays a pivotal role in analyzing magnetic domain structures and field gradients in materials, necessitating high-quality neutron absorption gratings for enhanced fringe contrast. Traditional fabrication techniques, typically filling gadolinium (Gd) or Gd-containing materials into the corresponding grating structures, face challenges in achieving optimal Gd filling ratios and thickness, limiting the neutron DPCI system’s performance. This paper introduces an approach utilizing ultrasound-assisted filling method to introduce Gd particles into grating trenches with dense deposition, achieving an absorption grating period of 42 μm. This method achieves an equivalent Gd thickness of 80.3 μm, corresponding to the filling ratio of 53.53%, as confirmed by scanning electron microscopy and x-ray micro-imaging. The utilization of an ultrasound not only improves the Gd filling ratio, but also suggests potential scalability for large-area grating production, marking a significant advancement in neutron DPCI technology by providing high-quality components.
基于钆颗粒的超声辅助填充法制造中子吸收光栅
中子差分相位对比成像(DPCI)在分析材料中的磁畴结构和磁场梯度方面发挥着关键作用,需要高质量的中子吸收光栅来增强条纹对比度。传统的制造技术通常是在相应的光栅结构中填充钆(Gd)或含钆材料,在实现最佳钆填充率和厚度方面面临挑战,从而限制了中子DPCI系统的性能。本文介绍了一种利用超声辅助填充法将 Gd 颗粒引入光栅沟槽并进行密集沉积的方法,实现了 42 μm 的吸收光栅周期。经扫描电子显微镜和 X 射线显微成像确认,这种方法实现了 80.3 μm 的等效钆厚度,相当于 53.53% 的填充率。超声波的使用不仅提高了钆的填充率,还表明了大面积光栅生产的潜在可扩展性,通过提供高质量的组件,标志着中子 DPCI 技术的重大进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Micromechanics and Microengineering
Journal of Micromechanics and Microengineering 工程技术-材料科学:综合
CiteScore
4.50
自引率
4.30%
发文量
136
审稿时长
2.8 months
期刊介绍: Journal of Micromechanics and Microengineering (JMM) primarily covers experimental work, however relevant modelling papers are considered where supported by experimental data. The journal is focussed on all aspects of: -nano- and micro- mechanical systems -nano- and micro- electomechanical systems -nano- and micro- electrical and mechatronic systems -nano- and micro- engineering -nano- and micro- scale science Please note that we do not publish materials papers with no obvious application or link to nano- or micro-engineering. Below are some examples of the topics that are included within the scope of the journal: -MEMS and NEMS: Including sensors, optical MEMS/NEMS, RF MEMS/NEMS, etc. -Fabrication techniques and manufacturing: Including micromachining, etching, lithography, deposition, patterning, self-assembly, 3d printing, inkjet printing. -Packaging and Integration technologies. -Materials, testing, and reliability. -Micro- and nano-fluidics: Including optofluidics, acoustofluidics, droplets, microreactors, organ-on-a-chip. -Lab-on-a-chip and micro- and nano-total analysis systems. -Biomedical systems and devices: Including bio MEMS, biosensors, assays, organ-on-a-chip, drug delivery, cells, biointerfaces. -Energy and power: Including power MEMS/NEMS, energy harvesters, actuators, microbatteries. -Electronics: Including flexible electronics, wearable electronics, interface electronics. -Optical systems. -Robotics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信