Upper bound for the second and third Hankel determinants of analytic functions associated with the error function and q-convolution combination

IF 1.5 3区 数学 Q1 MATHEMATICS
Hari M. Srivastava, Daniel Breaz, Alhanouf Alburaikan, Sheza M. El-Deeb
{"title":"Upper bound for the second and third Hankel determinants of analytic functions associated with the error function and q-convolution combination","authors":"Hari M. Srivastava, Daniel Breaz, Alhanouf Alburaikan, Sheza M. El-Deeb","doi":"10.1186/s13660-024-03151-z","DOIUrl":null,"url":null,"abstract":"Recently, El-Deeb and Cotîrlă (Mathematics 11:11234834, 2023) used the error function together with a q-convolution to introduce a new operator. By means of this operator the following class $\\mathcal{R}_{\\alpha ,\\Upsilon}^{\\lambda ,q}(\\delta ,\\eta )$ of analytic functions was studied: $$\\begin{aligned} &\\mathcal{R}_{\\alpha ,\\Upsilon }^{\\lambda ,q}(\\delta ,\\eta ) \\\\ &\\quad := \\biggl\\{ \\mathcal{ F}: {\\Re} \\biggl( (1-\\delta +2\\eta ) \\frac{\\mathcal{H}_{\\Upsilon }^{\\lambda ,q}\\mathcal{F}(\\zeta )}{\\zeta}+(\\delta -2\\eta ) \\bigl(\\mathcal{H} _{\\Upsilon}^{\\lambda ,q}\\mathcal{F}(\\zeta ) \\bigr) ^{{ \\prime}}+\\eta \\zeta \\bigl( \\mathcal{H}_{\\Upsilon}^{\\lambda ,q} \\mathcal{F}( \\zeta ) \\bigr) ^{{{\\prime \\prime}}} \\biggr) \\biggr\\} \\\\ &\\quad >\\alpha \\quad (0\\leqq \\alpha < 1). \\end{aligned}$$ For these general analytic functions $\\mathcal{F}\\in \\mathcal{R}_{\\beta ,\\Upsilon}^{\\lambda ,q}(\\delta , \\eta )$ , we give upper bounds for the Fekete–Szegö functional and for the second and third Hankel determinants.","PeriodicalId":16088,"journal":{"name":"Journal of Inequalities and Applications","volume":"101 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inequalities and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13660-024-03151-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, El-Deeb and Cotîrlă (Mathematics 11:11234834, 2023) used the error function together with a q-convolution to introduce a new operator. By means of this operator the following class $\mathcal{R}_{\alpha ,\Upsilon}^{\lambda ,q}(\delta ,\eta )$ of analytic functions was studied: $$\begin{aligned} &\mathcal{R}_{\alpha ,\Upsilon }^{\lambda ,q}(\delta ,\eta ) \\ &\quad := \biggl\{ \mathcal{ F}: {\Re} \biggl( (1-\delta +2\eta ) \frac{\mathcal{H}_{\Upsilon }^{\lambda ,q}\mathcal{F}(\zeta )}{\zeta}+(\delta -2\eta ) \bigl(\mathcal{H} _{\Upsilon}^{\lambda ,q}\mathcal{F}(\zeta ) \bigr) ^{{ \prime}}+\eta \zeta \bigl( \mathcal{H}_{\Upsilon}^{\lambda ,q} \mathcal{F}( \zeta ) \bigr) ^{{{\prime \prime}}} \biggr) \biggr\} \\ &\quad >\alpha \quad (0\leqq \alpha < 1). \end{aligned}$$ For these general analytic functions $\mathcal{F}\in \mathcal{R}_{\beta ,\Upsilon}^{\lambda ,q}(\delta , \eta )$ , we give upper bounds for the Fekete–Szegö functional and for the second and third Hankel determinants.
与误差函数和 q 卷积组合相关的解析函数的第二和第三汉克尔行列式的上限
最近,El-Deeb 和 Cotîrlă (数学 11:11234834, 2023)利用误差函数和 q-convolution 引入了一个新的算子。通过这个算子,研究了以下一类 $\mathcal{R}_{\alpha ,\Upsilon}^{\lambda ,q}(\delta ,\eta )$ 的解析函数:$$\begin{aligned} &\mathcal{R}_{\alpha ,\Upsilon }^{lambda ,q}(\delta ,\eta ) \ &\quad := \biggl\{ \mathcal{ F}:{/Re}\biggl( (1-\delta +2\eta ) \frac{\mathcal{H}_{\Upsilon }^{\lambda ,q}\mathcal{F}(\zeta )}{zeta}+(\delta -2\eta ) \bigl(\mathcal{H})_{\Upsilon}^{\lambda ,q}\mathcal{F}(\zeta ) \bigr)^{ \prime}}+eta \zeta \bigl( ( \mathcal{H} _{\Upsilon}^{\lambda ,q}\mathcal{F}( \zeta ) \bigr)^{{prime \prime}}\(大) (大)\\ &\quad >\alpha \quad (0\leqq \alpha < 1)。\end{aligned}$$ 对于这些一般分析函数 $\mathcal{F}\in \mathcal{R}_\{beta ,\Upsilon}^\{lambda ,q}(\delta , \eta )$ ,我们给出了 Fekete-Szegö 函数以及第二和第三个 Hankel 行列式的上限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
6.20%
发文量
136
期刊介绍: The aim of this journal is to provide a multi-disciplinary forum of discussion in mathematics and its applications in which the essentiality of inequalities is highlighted. This Journal accepts high quality articles containing original research results and survey articles of exceptional merit. Subject matters should be strongly related to inequalities, such as, but not restricted to, the following: inequalities in analysis, inequalities in approximation theory, inequalities in combinatorics, inequalities in economics, inequalities in geometry, inequalities in mechanics, inequalities in optimization, inequalities in stochastic analysis and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信