Closed geodesics and the first Betti number

Gonzalo Contreras, Marco Mazzucchelli
{"title":"Closed geodesics and the first Betti number","authors":"Gonzalo Contreras, Marco Mazzucchelli","doi":"arxiv-2407.02995","DOIUrl":null,"url":null,"abstract":"We prove that, on any closed manifold of dimension at least two with\nnon-trivial first Betti number, a $C^\\infty$ generic Riemannian metric has\ninfinitely many closed geodesics, and indeed closed geodesics of arbitrarily\nlarge length. We derive this existence result combining a theorem of Ma\\~n\\'e\ntogether with the following new theorem of independent interest: the existence\nof minimal closed geodesics, in the sense of Aubry-Mather theory, implies the\nexistence of a transverse homoclinic, and thus of a horseshoe, for the geodesic\nflow of a suitable $C^\\infty$-close Riemannian metric.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.02995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that, on any closed manifold of dimension at least two with non-trivial first Betti number, a $C^\infty$ generic Riemannian metric has infinitely many closed geodesics, and indeed closed geodesics of arbitrarily large length. We derive this existence result combining a theorem of Ma\~n\'e together with the following new theorem of independent interest: the existence of minimal closed geodesics, in the sense of Aubry-Mather theory, implies the existence of a transverse homoclinic, and thus of a horseshoe, for the geodesic flow of a suitable $C^\infty$-close Riemannian metric.
封闭测地线和贝蒂首数
我们证明,在任何维数至少为二的闭流形上,且具有非三维第一贝蒂数的$C^\infty$泛黎曼度量有无限多的闭大地线,而且是任意大长度的闭大地线。我们结合 Ma\~n\'etogether 的一个定理和以下新定理得出了这一存在性结果:在奥布里-马瑟理论的意义上,最小闭大地线的存在意味着一个合适的 $C^\infty$ 闭黎曼公设的大地流存在一个横向同轴线,从而存在一个马蹄形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信