Inertia of Kraus matrices II

Takashi Sano
{"title":"Inertia of Kraus matrices II","authors":"Takashi Sano","doi":"10.1007/s13226-024-00647-8","DOIUrl":null,"url":null,"abstract":"<p>For positive real numbers <span>\\(r, p_0,\\)</span> and <span>\\(p_1&lt; \\cdots &lt; p_n,\\)</span> let <span>\\(K_r\\)</span> be the Kraus matrix whose (<i>i</i>, <i>j</i>) entry is equal to </p><span>$$\\begin{aligned} \\frac{1}{p_i - p_j} \\Bigl ( \\frac{p_i^r - p_0^r}{p_i -p_0} - \\frac{p_j^r - p_0^r}{p_j -p_0} \\Bigr ). \\end{aligned}$$</span><p>In this article, we give a supplemental result to Sano and Takeuchi (J. Spectr. Theory, 2022) about the Kraus matrices <span>\\(K_r\\)</span>: the simplicity of non-zero eigenvalues. Our proof is accomplished by arguments similar to those for Loewner matrices given by Bhatia, Friedland and Jain (Indiana Univ. Math. J., 2016).</p>","PeriodicalId":501427,"journal":{"name":"Indian Journal of Pure and Applied Mathematics","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13226-024-00647-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For positive real numbers \(r, p_0,\) and \(p_1< \cdots < p_n,\) let \(K_r\) be the Kraus matrix whose (ij) entry is equal to

$$\begin{aligned} \frac{1}{p_i - p_j} \Bigl ( \frac{p_i^r - p_0^r}{p_i -p_0} - \frac{p_j^r - p_0^r}{p_j -p_0} \Bigr ). \end{aligned}$$

In this article, we give a supplemental result to Sano and Takeuchi (J. Spectr. Theory, 2022) about the Kraus matrices \(K_r\): the simplicity of non-zero eigenvalues. Our proof is accomplished by arguments similar to those for Loewner matrices given by Bhatia, Friedland and Jain (Indiana Univ. Math. J., 2016).

克劳斯矩阵的惯性 II
对于正实数 \(r,p_0,\)和 \(p_1<\cdots<p_n,\),让 \(K_r\)成为克劳斯矩阵,其(i, j)条目等于$$\begin{aligned}。\frac{1}{p_i - p_j}\Bigl ( \frac{p_i^r - p_0^r}{p_i -p_0} - \frac{p_j^r - p_0^r}{p_j -p_0} \Bigr ).\end{aligned}$$ 在本文中,我们给出了佐野和竹内(Sano and Takeuchi)(J. Spectr. Theory, 2022)关于克劳斯矩阵 \(K_r\)的一个补充结果:非零特征值的简单性。我们的证明是通过类似于巴蒂亚、弗里德兰和詹恩(Indiana Univ. Math. J., 2016)给出的关于洛厄纳矩阵的论证完成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信