Boundary Homogenization for Partially Reactive Patches

Claire E. Plunkett, Sean D. Lawley
{"title":"Boundary Homogenization for Partially Reactive Patches","authors":"Claire E. Plunkett, Sean D. Lawley","doi":"10.1137/23m1573422","DOIUrl":null,"url":null,"abstract":"Multiscale Modeling &amp;Simulation, Volume 22, Issue 2, Page 784-810, June 2024. <br/> Abstract. A wide variety of physical, chemical, and biological processes involve diffusive particles interacting with surfaces containing reactive patches. The theory of boundary homogenization seeks to encapsulate the effective reactivity of such a patchy surface by a single trapping rate parameter. In this paper, we derive the trapping rate for partially reactive patches occupying a small fraction of a surface. We use matched asymptotic analysis, double perturbation expansions, and homogenization theory to derive formulas for the trapping rate in terms of the far-field behavior of solutions to certain partial differential equations (PDEs). We then develop kinetic Monte Carlo (KMC) algorithms to rapidly compute these far-field behaviors. These KMC algorithms depend on probabilistic representations of PDE solutions, including using the theory of Brownian local time. We confirm our results by comparing to KMC simulations of the full stochastic system. We further compare our results to prior heuristic approximations.","PeriodicalId":501053,"journal":{"name":"Multiscale Modeling and Simulation","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiscale Modeling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/23m1573422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multiscale Modeling &Simulation, Volume 22, Issue 2, Page 784-810, June 2024.
Abstract. A wide variety of physical, chemical, and biological processes involve diffusive particles interacting with surfaces containing reactive patches. The theory of boundary homogenization seeks to encapsulate the effective reactivity of such a patchy surface by a single trapping rate parameter. In this paper, we derive the trapping rate for partially reactive patches occupying a small fraction of a surface. We use matched asymptotic analysis, double perturbation expansions, and homogenization theory to derive formulas for the trapping rate in terms of the far-field behavior of solutions to certain partial differential equations (PDEs). We then develop kinetic Monte Carlo (KMC) algorithms to rapidly compute these far-field behaviors. These KMC algorithms depend on probabilistic representations of PDE solutions, including using the theory of Brownian local time. We confirm our results by comparing to KMC simulations of the full stochastic system. We further compare our results to prior heuristic approximations.
部分反应斑块的边界均质化
多尺度建模与仿真》,第 22 卷第 2 期,第 784-810 页,2024 年 6 月。 摘要各种物理、化学和生物过程都涉及扩散粒子与含有反应斑块的表面相互作用。边界均质化理论试图用一个单一的捕获率参数来囊括这种斑块表面的有效反应性。在本文中,我们推导了占据表面一小部分的部分反应斑块的捕获率。我们使用匹配渐近分析、双扰动展开和均质化理论,根据某些偏微分方程 (PDE) 解的远场行为推导出捕获率公式。然后,我们开发了动力学蒙特卡罗(KMC)算法,以快速计算这些远场行为。这些 KMC 算法依赖于 PDE 解的概率表示,包括使用布朗局部时间理论。我们通过与完整随机系统的 KMC 仿真进行比较,确认了我们的结果。我们还将我们的结果与之前的启发式近似进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信