Julien Chhor, Suzanne Sigalla, Alexandre B. Tsybakov
{"title":"Benign overfitting and adaptive nonparametric regression","authors":"Julien Chhor, Suzanne Sigalla, Alexandre B. Tsybakov","doi":"10.1007/s00440-024-01278-0","DOIUrl":null,"url":null,"abstract":"<p>We study benign overfitting in the setting of nonparametric regression under mean squared risk, and on the scale of Hölder classes. We construct a local polynomial estimator of the regression function that is minimax optimal on a Hölder class with any given smoothness, and that is a continuous function interpolating the set of observations with high probability. The key element of the construction is the use of singular kernels. Moreover, we prove that adaptation to unknown smoothness is compatible with benign overfitting. Namely, we construct a continuous and interpolating local polynomial estimator attaining the minimax optimal rate in <span>\\(L_2\\)</span> adaptively to the unknown Hölder smoothness. Our results highlight the fact that interpolation can be fundamentally decoupled from bias-variance tradeoff in the problem of nonparametric regression.</p>","PeriodicalId":20527,"journal":{"name":"Probability Theory and Related Fields","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Theory and Related Fields","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00440-024-01278-0","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
We study benign overfitting in the setting of nonparametric regression under mean squared risk, and on the scale of Hölder classes. We construct a local polynomial estimator of the regression function that is minimax optimal on a Hölder class with any given smoothness, and that is a continuous function interpolating the set of observations with high probability. The key element of the construction is the use of singular kernels. Moreover, we prove that adaptation to unknown smoothness is compatible with benign overfitting. Namely, we construct a continuous and interpolating local polynomial estimator attaining the minimax optimal rate in \(L_2\) adaptively to the unknown Hölder smoothness. Our results highlight the fact that interpolation can be fundamentally decoupled from bias-variance tradeoff in the problem of nonparametric regression.
期刊介绍:
Probability Theory and Related Fields publishes research papers in modern probability theory and its various fields of application. Thus, subjects of interest include: mathematical statistical physics, mathematical statistics, mathematical biology, theoretical computer science, and applications of probability theory to other areas of mathematics such as combinatorics, analysis, ergodic theory and geometry. Survey papers on emerging areas of importance may be considered for publication. The main languages of publication are English, French and German.