Inertial randomized Kaczmarz algorithms for solving coherent linear systems

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED
Songnian He, Ziting Wang, Qiao-Li Dong
{"title":"Inertial randomized Kaczmarz algorithms for solving coherent linear systems","authors":"Songnian He, Ziting Wang, Qiao-Li Dong","doi":"10.1007/s11075-024-01872-2","DOIUrl":null,"url":null,"abstract":"<p>In this paper, by regarding the two-subspace Kaczmarz method as an alternated inertial randomized Kaczmarz algorithm we present a better convergence rate estimate under a mild condition. Furthermore, we accelerate the alternated inertial randomized Kaczmarz algorithm and introduce a multi-step inertial randomized Kaczmarz algorithm which is proved to have a faster convergence rate. Numerical experiments support the theory results and illustrate that the multi-inertial randomized Kaczmarz algorithm significantly outperform the two-subspace Kaczmarz method in solving coherent linear systems.</p>","PeriodicalId":54709,"journal":{"name":"Numerical Algorithms","volume":"198 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algorithms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11075-024-01872-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, by regarding the two-subspace Kaczmarz method as an alternated inertial randomized Kaczmarz algorithm we present a better convergence rate estimate under a mild condition. Furthermore, we accelerate the alternated inertial randomized Kaczmarz algorithm and introduce a multi-step inertial randomized Kaczmarz algorithm which is proved to have a faster convergence rate. Numerical experiments support the theory results and illustrate that the multi-inertial randomized Kaczmarz algorithm significantly outperform the two-subspace Kaczmarz method in solving coherent linear systems.

Abstract Image

求解相干线性系统的惯性随机卡兹马兹算法
在本文中,我们将双子空间 Kaczmarz 方法视为交替惯性随机 Kaczmarz 算法,在温和条件下提出了更好的收敛率估计。此外,我们加速了交替惯性随机化 Kaczmarz 算法,并引入了一种多步惯性随机化 Kaczmarz 算法,该算法被证明具有更快的收敛速度。数值实验支持了理论结果,并说明多惯性随机 Kaczmarz 算法在求解相干线性系统时明显优于双子空间 Kaczmarz 方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Numerical Algorithms
Numerical Algorithms 数学-应用数学
CiteScore
4.00
自引率
9.50%
发文量
201
审稿时长
9 months
期刊介绍: The journal Numerical Algorithms is devoted to numerical algorithms. It publishes original and review papers on all the aspects of numerical algorithms: new algorithms, theoretical results, implementation, numerical stability, complexity, parallel computing, subroutines, and applications. Papers on computer algebra related to obtaining numerical results will also be considered. It is intended to publish only high quality papers containing material not published elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信