Caputo fractional derivative of $$\alpha $$ -fractal spline

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED
T. M. C. Priyanka, A. Gowrisankar, M. Guru Prem Prasad, Yongshun Liang, Jinde Cao
{"title":"Caputo fractional derivative of $$\\alpha $$ -fractal spline","authors":"T. M. C. Priyanka, A. Gowrisankar, M. Guru Prem Prasad, Yongshun Liang, Jinde Cao","doi":"10.1007/s11075-024-01875-z","DOIUrl":null,"url":null,"abstract":"<p>The Caputo fractional derivative of a real continuous function <i>g</i> distinguishes from the other fractional derivative methods with the demand for the existence of its first order derivative <span>\\(g'\\)</span>. This attribute leads to the investigation of Caputo fractional derivative of <span>\\(\\alpha \\)</span>-fractal splines rather than just a continuous non-differentiable <span>\\(\\alpha \\)</span>-fractal function. A bounded linear operator corresponding to the Caputo fractional derivative of fractal version is reported. In addition, a new family of fractal perturbations is proposed in association with the fractional derivative. Thereafter, a numerical approach is used to determine the exact Caputo fractional derivative of fractal functions in terms of Legendre polynomials.</p>","PeriodicalId":54709,"journal":{"name":"Numerical Algorithms","volume":"134 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algorithms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11075-024-01875-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The Caputo fractional derivative of a real continuous function g distinguishes from the other fractional derivative methods with the demand for the existence of its first order derivative \(g'\). This attribute leads to the investigation of Caputo fractional derivative of \(\alpha \)-fractal splines rather than just a continuous non-differentiable \(\alpha \)-fractal function. A bounded linear operator corresponding to the Caputo fractional derivative of fractal version is reported. In addition, a new family of fractal perturbations is proposed in association with the fractional derivative. Thereafter, a numerical approach is used to determine the exact Caputo fractional derivative of fractal functions in terms of Legendre polynomials.

Abstract Image

分形样条曲线的卡普托分数导数
实连续函数 g 的卡普托分数导数与其他分数导数方法不同,它要求存在一阶导数 \(g'\)。这一特性导致了对\(\α\)-分形样条的卡普托分形导数的研究,而不仅仅是对\(\α\)-分形函数的连续无差导数的研究。报告了与分形版本的卡普托分形导数相对应的有界线性算子。此外,还提出了与分形导数相关的新的分形扰动系列。此后,利用数值方法确定了分形函数的精确卡普托分形导数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Numerical Algorithms
Numerical Algorithms 数学-应用数学
CiteScore
4.00
自引率
9.50%
发文量
201
审稿时长
9 months
期刊介绍: The journal Numerical Algorithms is devoted to numerical algorithms. It publishes original and review papers on all the aspects of numerical algorithms: new algorithms, theoretical results, implementation, numerical stability, complexity, parallel computing, subroutines, and applications. Papers on computer algebra related to obtaining numerical results will also be considered. It is intended to publish only high quality papers containing material not published elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信