{"title":"Integrating Analytics in Enterprise Systems: A Systematic Literature Review of Impacts and Innovations","authors":"Maria C. Solano, Juan C. Cruz","doi":"10.3390/admsci14070138","DOIUrl":null,"url":null,"abstract":"Recent advancements in Enterprise Information Systems (EISs) have transitioned from primarily supporting operational and tactical processes to enabling strategic decision-making through integrated analytics. This systematic review critically examines global literature from 2010 to 2023, focusing on the factors influencing the adoption of analytical components in EISs and assessing their impact on strategic decision-making in organizations. Following the PRISMA 2020 guidelines, we meticulously selected and reviewed articles from the Scopus database, employing a robust taxonomy based on the technology–organization–environment (TOE) framework to categorize findings. Our methodology involved a thorough screening of 234 studies, leading to a final analysis of 45 peer-reviewed articles that met our stringent criteria. These studies collectively underscore a significant gap in organizational capabilities, notably in the business ecosystems surrounding EISs, which hampers the effective adoption and utilization of advanced analytics. The results highlight a distinct need for improved understanding and implementation strategies for integrated analytics within EISs to enhance strategic decision-making processes. This review identifies critical factors for integrating analytics into Enterprise Information Systems (EISs), emphasizing technological, organizational, and environmental dimensions. It highlights a significant gap in models guiding ERP systems with Business Intelligence (BI) capabilities and underscores the need for robust research to enhance strategic decision-making through analytics.","PeriodicalId":30376,"journal":{"name":"Administrative Sciences","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Administrative Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/admsci14070138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 0
Abstract
Recent advancements in Enterprise Information Systems (EISs) have transitioned from primarily supporting operational and tactical processes to enabling strategic decision-making through integrated analytics. This systematic review critically examines global literature from 2010 to 2023, focusing on the factors influencing the adoption of analytical components in EISs and assessing their impact on strategic decision-making in organizations. Following the PRISMA 2020 guidelines, we meticulously selected and reviewed articles from the Scopus database, employing a robust taxonomy based on the technology–organization–environment (TOE) framework to categorize findings. Our methodology involved a thorough screening of 234 studies, leading to a final analysis of 45 peer-reviewed articles that met our stringent criteria. These studies collectively underscore a significant gap in organizational capabilities, notably in the business ecosystems surrounding EISs, which hampers the effective adoption and utilization of advanced analytics. The results highlight a distinct need for improved understanding and implementation strategies for integrated analytics within EISs to enhance strategic decision-making processes. This review identifies critical factors for integrating analytics into Enterprise Information Systems (EISs), emphasizing technological, organizational, and environmental dimensions. It highlights a significant gap in models guiding ERP systems with Business Intelligence (BI) capabilities and underscores the need for robust research to enhance strategic decision-making through analytics.