{"title":"Algorithms for Matrix Multiplication via Sampling and Opportunistic Matrix Multiplication","authors":"David G. Harris","doi":"10.1007/s00453-024-01247-y","DOIUrl":null,"url":null,"abstract":"<div><p>As proposed by Karppa and Kaski (in: Proceedings 30th ACM-SIAM Symposium on Discrete Algorithms (SODA), 2019) a novel “broken\" or \"opportunistic\" matrix multiplication algorithm, based on a variant of Strassen’s algorithm, and used this to develop new algorithms for Boolean matrix multiplication, among other tasks. Their algorithm can compute Boolean matrix multiplication in <span>\\(O(n^{2.778})\\)</span> time. While asymptotically faster matrix multiplication algorithms exist, most such algorithms are infeasible for practical problems. We describe an alternative way to use the broken multiplication algorithm to approximately compute matrix multiplication, either for real-valued or Boolean matrices. In brief, instead of running multiple iterations of the broken algorithm on the original input matrix, we form a new larger matrix by sampling and run a single iteration of the broken algorithm on it. Asymptotically, our algorithm has runtime <span>\\(O(n^{2.763})\\)</span>, a slight improvement over the Karppa–Kaski algorithm. Since the goal is to obtain new practical matrix-multiplication algorithms, we also estimate the concrete runtime for our algorithm for some large-scale sample problems. It appears that for these parameters, further optimizations are still needed to make our algorithm competitive.</p></div>","PeriodicalId":50824,"journal":{"name":"Algorithmica","volume":"86 9","pages":"2822 - 2844"},"PeriodicalIF":0.9000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithmica","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s00453-024-01247-y","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
As proposed by Karppa and Kaski (in: Proceedings 30th ACM-SIAM Symposium on Discrete Algorithms (SODA), 2019) a novel “broken" or "opportunistic" matrix multiplication algorithm, based on a variant of Strassen’s algorithm, and used this to develop new algorithms for Boolean matrix multiplication, among other tasks. Their algorithm can compute Boolean matrix multiplication in \(O(n^{2.778})\) time. While asymptotically faster matrix multiplication algorithms exist, most such algorithms are infeasible for practical problems. We describe an alternative way to use the broken multiplication algorithm to approximately compute matrix multiplication, either for real-valued or Boolean matrices. In brief, instead of running multiple iterations of the broken algorithm on the original input matrix, we form a new larger matrix by sampling and run a single iteration of the broken algorithm on it. Asymptotically, our algorithm has runtime \(O(n^{2.763})\), a slight improvement over the Karppa–Kaski algorithm. Since the goal is to obtain new practical matrix-multiplication algorithms, we also estimate the concrete runtime for our algorithm for some large-scale sample problems. It appears that for these parameters, further optimizations are still needed to make our algorithm competitive.
期刊介绍:
Algorithmica is an international journal which publishes theoretical papers on algorithms that address problems arising in practical areas, and experimental papers of general appeal for practical importance or techniques. The development of algorithms is an integral part of computer science. The increasing complexity and scope of computer applications makes the design of efficient algorithms essential.
Algorithmica covers algorithms in applied areas such as: VLSI, distributed computing, parallel processing, automated design, robotics, graphics, data base design, software tools, as well as algorithms in fundamental areas such as sorting, searching, data structures, computational geometry, and linear programming.
In addition, the journal features two special sections: Application Experience, presenting findings obtained from applications of theoretical results to practical situations, and Problems, offering short papers presenting problems on selected topics of computer science.