Stability and numerical solutions for second-order ordinary differential equations with application in mechanical systems

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Ali Turab, Andrés Montoyo, Josué-Antonio Nescolarde-Selva
{"title":"Stability and numerical solutions for second-order ordinary differential equations with application in mechanical systems","authors":"Ali Turab, Andrés Montoyo, Josué-Antonio Nescolarde-Selva","doi":"10.1007/s12190-024-02175-4","DOIUrl":null,"url":null,"abstract":"<p>This study undertakes a comprehensive analysis of second-order Ordinary Differential Equations (ODEs) to examine animal avoidance behaviors, specifically emphasizing analytical and computational aspects. By using the Picard–Lindelöf and fixed-point theorems, we prove the existence of unique solutions and examine their stability according to the Ulam-Hyers criterion. We also investigate the effect of external forces and the system’s sensitivity to initial conditions. This investigation applies Euler and Runge–Kutta fourth-order (RK4) methods to a mass-spring-damper system for numerical approximation. A detailed analysis of the numerical approaches, including a rigorous evaluation of both absolute and relative errors, demonstrates the efficacy of these techniques compared to the exact solutions. This robust examination enhances the theoretical foundations and practical use of such ODEs in understanding complex behavioral patterns, showcasing the connection between theoretical understanding and real-world applications.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12190-024-02175-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

This study undertakes a comprehensive analysis of second-order Ordinary Differential Equations (ODEs) to examine animal avoidance behaviors, specifically emphasizing analytical and computational aspects. By using the Picard–Lindelöf and fixed-point theorems, we prove the existence of unique solutions and examine their stability according to the Ulam-Hyers criterion. We also investigate the effect of external forces and the system’s sensitivity to initial conditions. This investigation applies Euler and Runge–Kutta fourth-order (RK4) methods to a mass-spring-damper system for numerical approximation. A detailed analysis of the numerical approaches, including a rigorous evaluation of both absolute and relative errors, demonstrates the efficacy of these techniques compared to the exact solutions. This robust examination enhances the theoretical foundations and practical use of such ODEs in understanding complex behavioral patterns, showcasing the connection between theoretical understanding and real-world applications.

Abstract Image

二阶常微分方程的稳定性和数值解法在机械系统中的应用
本研究对二阶常微分方程(ODE)进行了全面分析,以研究动物的回避行为,特别强调分析和计算方面。通过使用 Picard-Lindelöf 和定点定理,我们证明了唯一解的存在,并根据 Ulam-Hyers 准则检验了其稳定性。我们还研究了外力的影响以及系统对初始条件的敏感性。本研究采用欧拉和 Runge-Kutta 四阶 (RK4) 方法对质量弹簧-阻尼器系统进行数值逼近。对数值方法的详细分析,包括对绝对误差和相对误差的严格评估,证明了这些技术与精确解相比的功效。这项有力的研究加强了此类 ODEs 在理解复杂行为模式方面的理论基础和实际应用,展示了理论理解与实际应用之间的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信