Spectral convergence in geometric quantization — the case of non-singular Langrangian fibrations

Pub Date : 2024-06-06 DOI:10.4310/jsg.2023.v21.n6.a2
Kota Hattori, Mayuko Yamashita
{"title":"Spectral convergence in geometric quantization — the case of non-singular Langrangian fibrations","authors":"Kota Hattori, Mayuko Yamashita","doi":"10.4310/jsg.2023.v21.n6.a2","DOIUrl":null,"url":null,"abstract":"This paper is a sequel to $\\href{https://dx.doi.org/10.4310/JSG.2020.v18.n6.a3}{[11]}$. We develop a new approach to geometric quantization using the theory of convergence of metric measure spaces. Given a family of Kähler polarizations converging to a non-singular real polarization on a prequantized symplectic manifold, we show the spectral convergence result of $\\overline{\\partial}$-Laplacians, as well as the convergence result of quantum Hilbert spaces. We also consider the case of almost Kähler quantization for compatible almost complex structures, and show the analogous convergence results.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jsg.2023.v21.n6.a2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is a sequel to $\href{https://dx.doi.org/10.4310/JSG.2020.v18.n6.a3}{[11]}$. We develop a new approach to geometric quantization using the theory of convergence of metric measure spaces. Given a family of Kähler polarizations converging to a non-singular real polarization on a prequantized symplectic manifold, we show the spectral convergence result of $\overline{\partial}$-Laplacians, as well as the convergence result of quantum Hilbert spaces. We also consider the case of almost Kähler quantization for compatible almost complex structures, and show the analogous convergence results.
分享
查看原文
几何量子化中的谱收敛--非ingular Langrangian fibrations的情况
本文是 $\href{https://dx.doi.org/10.4310/JSG.2020.v18.n6.a3}{[11]}$ 的续篇。我们利用度量空间的收敛理论开发了一种几何量化的新方法。给定在预量化交点流形上收敛于非星实极化的凯勒极化族,我们展示了 $\overline{\partial}$-Laplacians 的谱收敛结果,以及量子希尔伯特空间的收敛结果。我们还考虑了相容近复结构的近凯勒量化情况,并展示了类似的收敛结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信