Hadal zones of the Southwest Pacific and east Indian oceans

IF 1.6 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
Alan J. Jamieson, Gaelen T. Giles, Heather A. Stewart
{"title":"Hadal zones of the Southwest Pacific and east Indian oceans","authors":"Alan J. Jamieson, Gaelen T. Giles, Heather A. Stewart","doi":"10.1007/s11001-024-09550-7","DOIUrl":null,"url":null,"abstract":"<p>The hadal zone (water depths &gt; 6000 m) are unlike the overlying shallower marine regions (bathyal and abyssal) as it does not follow a continuum from the continental shelves to abyssal plains, but rather exhibits a globally disjunct series of discrete deep-sea habitats confined within geomorphological features. From an ecological perspective, hadal communities are often endemic to individual or adjacent features and are partitioned and isolated by geomorphological structures. To examine the size, shape, depth and degree of isolation of features where hadal fauna inhabit, this study explores the broad seafloor geomorphology, and distinctly partitioned hadal areas, across the Southwest Pacific and East Indian oceans using global bathymetric datasets. This research revealed the area occupied by hadal depths to be 716,915 km<sup>2</sup> of which 58% are accounted for by trenches, 37% in basins and troughs, and 5% fracture zones. The largest feature in terms of area &gt; 6000 m depth is the Wharton Basin with 218,030 km<sup>2</sup> spanning 376 discrete areas. The largest continuous hadal habitats were the Kermadec and Tonga trenches at 145,103 and 111,951 km<sup>2</sup> respectively, whereas features such as the Java Trench comprise two hadal components partitioned by a bathymetric high. Conversely, no physical barrier exists between the New Britain and Bougainville trenches thus any literature pertaining to hadal species or habitats from these trenches can be merged. This study highlights that the hadal zone mainly comprises two main geomorphological features (trenches and basins) that differ in size, depth and complexity. Hadal basins cover vast, generally shallower areas, comparable to abyssal plains, whereas trenches, despite a lesser footprint, represent greater depth ranges and complexity. As such, sampling designs and interpretation of ecological data must differ and hadal basins likely play an increasingly important role in understanding ecological shifts from abyssal to hadal ecosystems.</p>","PeriodicalId":49882,"journal":{"name":"Marine Geophysical Research","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Geophysical Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11001-024-09550-7","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The hadal zone (water depths > 6000 m) are unlike the overlying shallower marine regions (bathyal and abyssal) as it does not follow a continuum from the continental shelves to abyssal plains, but rather exhibits a globally disjunct series of discrete deep-sea habitats confined within geomorphological features. From an ecological perspective, hadal communities are often endemic to individual or adjacent features and are partitioned and isolated by geomorphological structures. To examine the size, shape, depth and degree of isolation of features where hadal fauna inhabit, this study explores the broad seafloor geomorphology, and distinctly partitioned hadal areas, across the Southwest Pacific and East Indian oceans using global bathymetric datasets. This research revealed the area occupied by hadal depths to be 716,915 km2 of which 58% are accounted for by trenches, 37% in basins and troughs, and 5% fracture zones. The largest feature in terms of area > 6000 m depth is the Wharton Basin with 218,030 km2 spanning 376 discrete areas. The largest continuous hadal habitats were the Kermadec and Tonga trenches at 145,103 and 111,951 km2 respectively, whereas features such as the Java Trench comprise two hadal components partitioned by a bathymetric high. Conversely, no physical barrier exists between the New Britain and Bougainville trenches thus any literature pertaining to hadal species or habitats from these trenches can be merged. This study highlights that the hadal zone mainly comprises two main geomorphological features (trenches and basins) that differ in size, depth and complexity. Hadal basins cover vast, generally shallower areas, comparable to abyssal plains, whereas trenches, despite a lesser footprint, represent greater depth ranges and complexity. As such, sampling designs and interpretation of ecological data must differ and hadal basins likely play an increasingly important role in understanding ecological shifts from abyssal to hadal ecosystems.

Abstract Image

西南太平洋和东印度洋的哈达尔区
深海浅滩区(水深 6000 米以上)与上覆的较浅海洋区域(深海浅滩区和深海平原区)不同,它不是从大陆架到深海平原的连续区域,而是全球范围内局限于地貌特征的一系列离散的深海栖息地。从生态学角度看,深海鳕群落往往是个别或邻近地貌的特有群落,并被地貌结构分割和隔离。为了研究岩盐动物栖息地的大小、形状、深度和隔离程度,本研究利用全球水深测量数据集探索了西南太平洋和东印度洋的广阔海底地貌,以及明显分隔的岩盐区域。研究显示,哈德深度所占面积为 716,915 平方公里,其中海沟占 58%,盆地和海槽占 37%,断裂带占 5%。面积最大、深度达 6000 米的地貌是沃顿盆地,面积为 218,030 平方公里,横跨 376 个不连续区域。最大的连续哈达栖息地是克马代克海沟和汤加海沟,面积分别为 145,103 平方公里和 111,951 平方公里,而爪哇海沟等地貌则由两个哈达部分组成,被一个测深高地分割开来。相反,新不列颠海沟和布干维尔海沟之间不存在任何物理障碍,因此可以合并这些海沟中有关哈达尔物种或栖息地的任何文献。这项研究强调,哈达尔区主要包括两个主要的地貌特征(海沟和盆地),它们在大小、深度和复杂程度上各不相同。哈达尔盆地面积广阔,一般较浅,可与深海平原相媲美,而海沟尽管面积较小,但深度范围更大,复杂程度更高。因此,取样设计和生态数据的解释必须有所不同,在了解从深海生态系统到海沟生态系统的生态转变过程中,海沟盆地可能会发挥越来越重要的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Marine Geophysical Research
Marine Geophysical Research 地学-地球化学与地球物理
CiteScore
2.80
自引率
14.30%
发文量
41
审稿时长
>12 weeks
期刊介绍: Well-established international journal presenting marine geophysical experiments on the geology of continental margins, deep ocean basins and the global mid-ocean ridge system. The journal publishes the state-of-the-art in marine geophysical research including innovative geophysical data analysis, new deep sea floor imaging techniques and tools for measuring rock and sediment properties. Marine Geophysical Research reaches a large and growing community of readers worldwide. Rooted on early international interests in researching the global mid-ocean ridge system, its focus has expanded to include studies of continental margin tectonics, sediment deposition processes and resulting geohazards as well as their structure and stratigraphic record. The editors of MGR predict a rising rate of advances and development in this sphere in coming years, reflecting the diversity and complexity of marine geological processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信