{"title":"A Simple Proof of the Nonuniform Kahn–Kalai Conjecture","authors":"Bryan Park, Jan Vondrák","doi":"10.1137/23m1587075","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Discrete Mathematics, Volume 38, Issue 3, Page 2089-2094, September 2024. <br/> Abstract. We revisit the Kahn–Kalai conjecture, recently proved in striking fashion by Park and Pham, and present a slightly reformulated simple proof which has a few advantages: (1) it works for nonuniform product measures, (2) it gives near-optimal bounds even for sampling probabilities close to 1, (3) it gives a clean bound of [math] for every [math]-bounded set system, [math].","PeriodicalId":49530,"journal":{"name":"SIAM Journal on Discrete Mathematics","volume":"22 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1587075","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Discrete Mathematics, Volume 38, Issue 3, Page 2089-2094, September 2024. Abstract. We revisit the Kahn–Kalai conjecture, recently proved in striking fashion by Park and Pham, and present a slightly reformulated simple proof which has a few advantages: (1) it works for nonuniform product measures, (2) it gives near-optimal bounds even for sampling probabilities close to 1, (3) it gives a clean bound of [math] for every [math]-bounded set system, [math].
期刊介绍:
SIAM Journal on Discrete Mathematics (SIDMA) publishes research papers of exceptional quality in pure and applied discrete mathematics, broadly interpreted. The journal''s focus is primarily theoretical rather than empirical, but the editors welcome papers that evolve from or have potential application to real-world problems. Submissions must be clearly written and make a significant contribution.
Topics include but are not limited to:
properties of and extremal problems for discrete structures
combinatorial optimization, including approximation algorithms
algebraic and enumerative combinatorics
coding and information theory
additive, analytic combinatorics and number theory
combinatorial matrix theory and spectral graph theory
design and analysis of algorithms for discrete structures
discrete problems in computational complexity
discrete and computational geometry
discrete methods in computational biology, and bioinformatics
probabilistic methods and randomized algorithms.