{"title":"Optimal control of a dengue model with cross-immunity","authors":"Bernd Kugelmann, Roland Pulch","doi":"10.1186/s13362-024-00150-z","DOIUrl":null,"url":null,"abstract":"Mathematical modelling of a dengue epidemic with two serotypes including a temporary cross-immunity yields a nonlinear system consisting of ordinary differential equations (ODEs). We investigate an optimal control problem, where the integral of the infected humans is minimised within a time interval. The controls represent human actions to decrease the number of mosquitos in the model. An integral constraint is added, which takes a limitation on the sum of the human actions into account. On the one hand, we derive and apply a direct approach to solve the optimal control problem. Therein, a discretisation of the controls is constructed using spline interpolation in time. Consequently, a finite-dimensional constrained minimisation problem can be solved. On the other hand, we employ an indirect approach, where necessary conditions for an optimal solution are considered. This technique yields a multipoint boundary value problem of a larger system of ODEs including adjoint equations. We present results of numerical computations, where the two methods are compared.","PeriodicalId":44012,"journal":{"name":"Journal of Mathematics in Industry","volume":"5 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics in Industry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13362-024-00150-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Mathematical modelling of a dengue epidemic with two serotypes including a temporary cross-immunity yields a nonlinear system consisting of ordinary differential equations (ODEs). We investigate an optimal control problem, where the integral of the infected humans is minimised within a time interval. The controls represent human actions to decrease the number of mosquitos in the model. An integral constraint is added, which takes a limitation on the sum of the human actions into account. On the one hand, we derive and apply a direct approach to solve the optimal control problem. Therein, a discretisation of the controls is constructed using spline interpolation in time. Consequently, a finite-dimensional constrained minimisation problem can be solved. On the other hand, we employ an indirect approach, where necessary conditions for an optimal solution are considered. This technique yields a multipoint boundary value problem of a larger system of ODEs including adjoint equations. We present results of numerical computations, where the two methods are compared.