Optimal control of a dengue model with cross-immunity

IF 1.2 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Bernd Kugelmann, Roland Pulch
{"title":"Optimal control of a dengue model with cross-immunity","authors":"Bernd Kugelmann, Roland Pulch","doi":"10.1186/s13362-024-00150-z","DOIUrl":null,"url":null,"abstract":"Mathematical modelling of a dengue epidemic with two serotypes including a temporary cross-immunity yields a nonlinear system consisting of ordinary differential equations (ODEs). We investigate an optimal control problem, where the integral of the infected humans is minimised within a time interval. The controls represent human actions to decrease the number of mosquitos in the model. An integral constraint is added, which takes a limitation on the sum of the human actions into account. On the one hand, we derive and apply a direct approach to solve the optimal control problem. Therein, a discretisation of the controls is constructed using spline interpolation in time. Consequently, a finite-dimensional constrained minimisation problem can be solved. On the other hand, we employ an indirect approach, where necessary conditions for an optimal solution are considered. This technique yields a multipoint boundary value problem of a larger system of ODEs including adjoint equations. We present results of numerical computations, where the two methods are compared.","PeriodicalId":44012,"journal":{"name":"Journal of Mathematics in Industry","volume":"5 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics in Industry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13362-024-00150-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Mathematical modelling of a dengue epidemic with two serotypes including a temporary cross-immunity yields a nonlinear system consisting of ordinary differential equations (ODEs). We investigate an optimal control problem, where the integral of the infected humans is minimised within a time interval. The controls represent human actions to decrease the number of mosquitos in the model. An integral constraint is added, which takes a limitation on the sum of the human actions into account. On the one hand, we derive and apply a direct approach to solve the optimal control problem. Therein, a discretisation of the controls is constructed using spline interpolation in time. Consequently, a finite-dimensional constrained minimisation problem can be solved. On the other hand, we employ an indirect approach, where necessary conditions for an optimal solution are considered. This technique yields a multipoint boundary value problem of a larger system of ODEs including adjoint equations. We present results of numerical computations, where the two methods are compared.
具有交叉免疫的登革热模型的优化控制
登革热疫情有两种血清型,其中包括暂时性交叉免疫,这种疫情的数学模型产生了一个由常微分方程(ODE)组成的非线性系统。我们研究了一个最优控制问题,即在一定时间间隔内受感染人类的积分最小化。控制表示人类减少模型中蚊子数量的行动。我们加入了一个积分约束,它考虑到了对人类行动总和的限制。一方面,我们推导并应用直接方法来解决最优控制问题。在此过程中,我们使用时间样条插值法对控制进行离散化处理。因此,可以求解有限维度的受限最小化问题。另一方面,我们采用了一种间接方法,即考虑最优解的必要条件。这种技术可以求解包括邻接方程在内的较大 ODEs 系统的多点边界值问题。我们介绍了数值计算的结果,并对两种方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Mathematics in Industry
Journal of Mathematics in Industry MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
5.00
自引率
0.00%
发文量
12
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信