Invertible Fusion Categories

Sean Sanford, Noah Snyder
{"title":"Invertible Fusion Categories","authors":"Sean Sanford, Noah Snyder","doi":"arxiv-2407.02597","DOIUrl":null,"url":null,"abstract":"A tensor category $\\mathcal{C}$ over a field $\\mathbb{K}$ is said to be\ninvertible if there's a tensor category $\\mathcal{D}$ such that\n$\\mathcal{C}\\boxtimes\\mathcal{D}$ is Morita equivalent to\n$\\mathrm{Vec}_{\\mathbb{K}}$. When $\\mathbb{K}$ is algebraically closed, it is\nwell-known that the only invertible fusion category is\n$\\mathrm{Vec}_{\\mathbb{K}}$, and any invertible multi-fusion category is Morita\nequivalent to $\\mathrm{Vec}_{\\mathbb{K}}$. By contrast, we show that for\ngeneral $\\mathbb{K}$ the invertible multi-fusion categories over a field\n$\\mathbb{K}$ are classified (up to Morita equivalence) by\n$H^3(\\mathbb{K};\\mathbb{G}_m)$, the third Galois cohomology of the absolute\nGalois group of $\\mathbb{K}$. We explicitly construct a representative of each\nclass that is fusion (but not split fusion) in the sense that the unit object\nis simple (but not split simple). One consequence of our results is that fusion\ncategories with braided equivalent Drinfeld centers need not be Morita\nequivalent when this cohomology group is nontrivial.","PeriodicalId":501317,"journal":{"name":"arXiv - MATH - Quantum Algebra","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Quantum Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.02597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A tensor category $\mathcal{C}$ over a field $\mathbb{K}$ is said to be invertible if there's a tensor category $\mathcal{D}$ such that $\mathcal{C}\boxtimes\mathcal{D}$ is Morita equivalent to $\mathrm{Vec}_{\mathbb{K}}$. When $\mathbb{K}$ is algebraically closed, it is well-known that the only invertible fusion category is $\mathrm{Vec}_{\mathbb{K}}$, and any invertible multi-fusion category is Morita equivalent to $\mathrm{Vec}_{\mathbb{K}}$. By contrast, we show that for general $\mathbb{K}$ the invertible multi-fusion categories over a field $\mathbb{K}$ are classified (up to Morita equivalence) by $H^3(\mathbb{K};\mathbb{G}_m)$, the third Galois cohomology of the absolute Galois group of $\mathbb{K}$. We explicitly construct a representative of each class that is fusion (but not split fusion) in the sense that the unit object is simple (but not split simple). One consequence of our results is that fusion categories with braided equivalent Drinfeld centers need not be Morita equivalent when this cohomology group is nontrivial.
不可逆融合类别
如果存在一个张量类别 $\mathcal{D}$ ,使得 $\mathcal{C}\boxtimes\mathcal{D}$ 与 $\mathrm{Vec}_\mathbb{K}}$ 是莫里塔等价的,那么在一个域 $\mathbb{K}$ 上的张量类别 $\mathcal{C}$ 就被称为是可逆的。当 $\mathbb{K}$ 是代数封闭的,众所周知,唯一可逆的融合范畴是 $/mathrm{Vec}_{mathbb{K}}$,而任何可逆的多重融合范畴都与 $\mathrm{Vec}_{mathbb{K}}$ 是莫里塔等价的。与此相反,我们证明了在一个域$\mathbb{K}$上的可逆多融合范畴是由$H^3(\mathbb{K};\mathbb{G}_m)$(即$\mathbb{K}$的绝对伽罗瓦群的第三伽罗瓦同调)分类的(直到莫里塔等价)。我们明确地构造了每一类的代表,在单位对象是简单的(但不是分裂简单的)意义上,它是融合的(但不是分裂融合的)。我们的结果之一是,当这个同调群是非难的时,具有编织等价德林菲尔德中心的融合类不一定是莫里塔等价的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信