Automorphisms, cohomology and extensions of symmetric quandles

Biswadeep Karmakar, Deepanshi Saraf, Mahender Singh
{"title":"Automorphisms, cohomology and extensions of symmetric quandles","authors":"Biswadeep Karmakar, Deepanshi Saraf, Mahender Singh","doi":"arxiv-2407.02971","DOIUrl":null,"url":null,"abstract":"It is well-known that the cohomology of symmetric quandles generates robust\ncocycle invariants for unoriented classical and surface links. Expanding on the\nrecently introduced module-theoretic generalized cohomology for symmetric\nquandles, we derive a four-term exact sequence that relates 1-cocycles, second\ncohomology, and a specific group of automorphisms associated with the\nextensions of symmetric quandles. This exact sequence shows that the\nobstruction to lifting and extending automorphisms is found in the second\nsymmetric quandle cohomology. Additionally, some general aspects of dynamical\ncocycles and extensions are discussed.","PeriodicalId":501317,"journal":{"name":"arXiv - MATH - Quantum Algebra","volume":"64 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Quantum Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.02971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

It is well-known that the cohomology of symmetric quandles generates robust cocycle invariants for unoriented classical and surface links. Expanding on the recently introduced module-theoretic generalized cohomology for symmetric quandles, we derive a four-term exact sequence that relates 1-cocycles, second cohomology, and a specific group of automorphisms associated with the extensions of symmetric quandles. This exact sequence shows that the obstruction to lifting and extending automorphisms is found in the second symmetric quandle cohomology. Additionally, some general aspects of dynamical cocycles and extensions are discussed.
对称广域的自形、同调与扩展
众所周知,对称烛台的同调为无取向的经典链接和曲面链接生成了稳健的周期不变式。通过扩展最近引入的对称烛台的模块理论广义同调,我们推导出了一个四项精确序列,它将 1-周期、第二同调和与对称烛台的扩展相关的特定自形体群联系起来。这个精确序列表明,提升和扩展自形体的障碍存在于第二对称阶梯同调中。此外,还讨论了动力学循环和扩展的一些一般性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信