{"title":"Towards Enhanced Energy Aware Resource Optimization for Edge Devices Through Multi-cluster Communication Systems","authors":"Saihong Li, Yingying Ma, Yusha Zhang, Yinghui Xie","doi":"10.1007/s10723-024-09773-3","DOIUrl":null,"url":null,"abstract":"<p>In the realm of the Internet of Things (IoT), the significance of edge devices within multi-cluster communication systems is on the rise. As the quantity of clusters and devices associated with each cluster grows, challenges related to resource optimization emerge. To address these concerns and enhance resource utilization, it is imperative to devise efficient strategies for resource allocation to specific clusters. These strategies encompass the implementation of load-balancing algorithms, dynamic scheduling, and virtualization techniques that generate logical instances of resources within the clusters. Moreover, the implementation of data management techniques is essential to facilitate effective data sharing among clusters. These strategies collectively minimize resource waste, enabling the streamlined management of networking and data resources in a multi-cluster communication system. This paper introduces an energy-efficient resource allocation technique tailored for edge devices in such systems. The proposed strategy leverages a higher-level meta-cluster heuristic to construct an optimization model, aiming to enhance the resource utilization of individual edge nodes. Emphasizing energy consumption and resource optimization while meeting latency requirements, the model employs a graph-based node selection method to assign high-load nodes to optimal clusters. To ensure fairness, resource allocation collaborates with resource descriptions and Quality of Service (QoS) metrics to tailor resource distribution. Additionally, the proposed strategy dynamically updates its parameter settings to adapt to various scenarios. The simulations confirm the superiority of the proposed strategy in different aspects.</p>","PeriodicalId":54817,"journal":{"name":"Journal of Grid Computing","volume":"2014 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Grid Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10723-024-09773-3","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In the realm of the Internet of Things (IoT), the significance of edge devices within multi-cluster communication systems is on the rise. As the quantity of clusters and devices associated with each cluster grows, challenges related to resource optimization emerge. To address these concerns and enhance resource utilization, it is imperative to devise efficient strategies for resource allocation to specific clusters. These strategies encompass the implementation of load-balancing algorithms, dynamic scheduling, and virtualization techniques that generate logical instances of resources within the clusters. Moreover, the implementation of data management techniques is essential to facilitate effective data sharing among clusters. These strategies collectively minimize resource waste, enabling the streamlined management of networking and data resources in a multi-cluster communication system. This paper introduces an energy-efficient resource allocation technique tailored for edge devices in such systems. The proposed strategy leverages a higher-level meta-cluster heuristic to construct an optimization model, aiming to enhance the resource utilization of individual edge nodes. Emphasizing energy consumption and resource optimization while meeting latency requirements, the model employs a graph-based node selection method to assign high-load nodes to optimal clusters. To ensure fairness, resource allocation collaborates with resource descriptions and Quality of Service (QoS) metrics to tailor resource distribution. Additionally, the proposed strategy dynamically updates its parameter settings to adapt to various scenarios. The simulations confirm the superiority of the proposed strategy in different aspects.
期刊介绍:
Grid Computing is an emerging technology that enables large-scale resource sharing and coordinated problem solving within distributed, often loosely coordinated groups-what are sometimes termed "virtual organizations. By providing scalable, secure, high-performance mechanisms for discovering and negotiating access to remote resources, Grid technologies promise to make it possible for scientific collaborations to share resources on an unprecedented scale, and for geographically distributed groups to work together in ways that were previously impossible. Similar technologies are being adopted within industry, where they serve as important building blocks for emerging service provider infrastructures.
Even though the advantages of this technology for classes of applications have been acknowledged, research in a variety of disciplines, including not only multiple domains of computer science (networking, middleware, programming, algorithms) but also application disciplines themselves, as well as such areas as sociology and economics, is needed to broaden the applicability and scope of the current body of knowledge.