{"title":"Multi-scale point pair normal encoding for local feature description and 3D object recognition","authors":"Chu’ai Zhang, Yating Wang, Qiao Wu, Jiangbin Zheng, Jiaqi Yang, Siwen Quan, Yanning Zhang","doi":"10.1117/1.jei.33.4.043005","DOIUrl":null,"url":null,"abstract":"Recognizing three-dimensional (3D) objects based on local feature descriptors is a highly challenging task. Existing 3D local feature descriptors rely on single-scale surface normals, which are susceptible to noise and outliers, significantly compromising their effectiveness and robustness. A multi-scale point pair normal encoding (M-POE) method for 3D object recognition is proposed. First, we introduce the M-POE descriptor, which encodes voxelized features with multi-scale normals to describe local surfaces, exhibiting strong distinctiveness and robustness against various interferences. Second, we present guided sample consensus in second-order graphs (GSAC-SOG), an extension of RANSAC that incorporates geometric constraints and reduces sampling randomness, enabling accurate estimation of the object’s six-degree-of-freedom (6-DOF) pose. Finally, a 3D object recognition method based on the M-POE descriptor is proposed. The proposed method is evaluated on five standard datasets with state-of-the-art comparisons. The results demonstrate that (1) M-POE is robust, discriminative, and efficient; (2) GSAC-SOG is robust to outliers; (3) the proposed 3D object recognition method achieves high accuracy and robustness against clutter and occlusion, with recognition rates of 99.45%, 94.21%, and 97.88% on the U3OR, Queen, and CFV datasets, respectively.","PeriodicalId":54843,"journal":{"name":"Journal of Electronic Imaging","volume":"41 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Imaging","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1117/1.jei.33.4.043005","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Recognizing three-dimensional (3D) objects based on local feature descriptors is a highly challenging task. Existing 3D local feature descriptors rely on single-scale surface normals, which are susceptible to noise and outliers, significantly compromising their effectiveness and robustness. A multi-scale point pair normal encoding (M-POE) method for 3D object recognition is proposed. First, we introduce the M-POE descriptor, which encodes voxelized features with multi-scale normals to describe local surfaces, exhibiting strong distinctiveness and robustness against various interferences. Second, we present guided sample consensus in second-order graphs (GSAC-SOG), an extension of RANSAC that incorporates geometric constraints and reduces sampling randomness, enabling accurate estimation of the object’s six-degree-of-freedom (6-DOF) pose. Finally, a 3D object recognition method based on the M-POE descriptor is proposed. The proposed method is evaluated on five standard datasets with state-of-the-art comparisons. The results demonstrate that (1) M-POE is robust, discriminative, and efficient; (2) GSAC-SOG is robust to outliers; (3) the proposed 3D object recognition method achieves high accuracy and robustness against clutter and occlusion, with recognition rates of 99.45%, 94.21%, and 97.88% on the U3OR, Queen, and CFV datasets, respectively.
期刊介绍:
The Journal of Electronic Imaging publishes peer-reviewed papers in all technology areas that make up the field of electronic imaging and are normally considered in the design, engineering, and applications of electronic imaging systems.